Valued-added levulinic acid can be synthesized from glucose as an abundance feedstock. Solid acid catalysts have been applied for this task due to the high catalytic activity with ease of separation. In this work, Al2O3 support was synthesized using solution combustion method and xNb/Al2O3 catalysts (x=1, 5, and 10 wt% of Nb2O5) were prepared by incipient wetness impregnation. The catalysts were characterized by XRD, N2 adsorption, SEM, and NH3-TPD. The XRD results indicated that a mixture of γ- and α-Al2O3 was obtained from solution combustion. The specific surface area of Al2O3 support was 159 and it decreased to 103, 98, and 79 m2/g with increasing Nb2O5 to 1, 5, and 10 wt%, respectively. Moreover, the NH3−TPD results demonstrated that amount of acid sites also declined from 1.01 to 0.85, 0.53, and 0.44 mmol NH3/g as Nb2O5 contents increased. While one-pot derived 10 wt% Nb2O5−Al2O3 resulted in γ-Al2O3 as majority with surface area of 159 m2/g and acidity of 0.89 mmol NH3/g. This suggested that incorporation of Nb2O5 in Al2O3 retarded the phase transformation at high temperature. For a series of Nb-impregnated Al2O3, levulinic acid yields were 6.6, 6.5, and 5.5 mol% for 1, 5, and 10 wt% Nb2O5/Al2O3, respectively. Interestingly, one-pot derived 10 wt% Nb2O5-Al2O3 produced the highest levulinic acid yield of 18.9 mol%. This study shows the advantage of solution combustion for synthesizing metal-oxide acid catalysts to convert biomass-based feedstock to value-added products.

1.
F.D.
Pileidis
and
M.-M.
Titirici
,
ChemSusChem
9
(
6
),
562
582
(
2016
).
2.
Y.
Kai
,
J.
Cody
,
G.
Jing
, and
Y.
Yong
,
Renew. Sust. Energ. Rev.
,
51
,
986
997
(
2015
).
3.
Y.
Liu
,
H.
Li
,
J.
He
,
W.
Zhao
,
T.
Yang
, and
S.
Yang
,
Catal. Commun.
,
93
,
20
24
(
2017
).
4.
K.M.A.
Santos
,
E.M.
Albuquerque
,
G.
Innocenti
,
L.E.P.
Borges
,
C.
Sievers
, and
M.A.
Fraga
,
ChemCatChem
,
11
,
3054
3063
(
2019
).
5.
M.L.
Marin
,
G.L.
Hallett-Tapley
,
S.
Impellizzeri
,
C.
Fasciani
,
S.
Simoncelli
,
J.C.
Netto-Ferreira
, and
J.C.
Scaiano
,
Catal. Sci. Technol.
,
4
(
9
),
3044
3052
(
2014
).
6.
M.N.
Catrinck
,
P.S.
Barbosa
,
H.R.O.
Filho
,
R.S.
Monteiro
,
M.H.P.
Barbosa
,
R.M.
Ribas
, and
R.F.
Teófilo
,
Fuel Process. Technol.
,
207
,
106482
(
2020
).
7.
H.
Jiao
,
X.
Zhao
,
C.
Lv
,
Y.
Wang
,
D.
Yang
,
Z.
Li
, and
X.
Yao
,
Sci. Rep.
,
6
,
34068
(
2016
).
8.
Y.
Liu
,
H.
Li
,
J.
He
,
W.
Zhao
,
T.
Yang
, and
S.
Yang
,
Catal. Commun.
,
93
,
20
24
(
2017
).
9.
C.
Yue
,
G.
Li
,
E.A.
Pidko
,
J.J.
Wiesfeld
,
M.
Rigutto
, and
Emiel J. M.
Hensen
,
ChemSusChem
,
9
,
2421
2429
(
2016
).
10.
F.
Deganello
and
A.
KumarTyagi
,
Prog. Cryst. Growth Charact. Mater.
,
64
(
2
),
23
61
(
2018
).
11.
P.
Kruemek
,
S.
Mattathankul
,
N.
Triamnak
,
N.
Chotigkrai
,
IOP Conf. Seri.: Mater. Sci. Eng.
,
778
, Article 012061 (
2020
).
12.
N.
Chotigkrai
,
Y.
Hochin
,
J.
Panpranot
, and
P.
Praserthdam
,
React. Kinet. Mech. Catal.
,
117
,
565
581
(
2016
).
13.
R.
Khumho
,
S.
Yousatit
, and
C.
Ngamcharussrivichai
,
Catalysts
,
11
(
8
),
887
(
2021
).
14.
H.
Jiao
,
X.
Zhao
,
C.
Lv
,
Y.
Wang
,
D.
Yang
,
Z.
Li
, and
X.
Yao
,
Sci Rep
6
,
34068
(
2016
).
15.
R.
Li
,
Q.
Lin
,
Y.
Wang
,
W.
Yang
,
X.
Liu
,
W.
Li
,
X.
Wang
,
X.
Wang
,
C.
Liu
, and
J.
Ren
,
Appl. Catal. B
286
,
119862
(
2021
).
16.
N.A.
SyahirahRamli
and
N.A.
SaidinaAmin
,
Appl. Catal. B,163
,
487
498
(
2015
).
This content is only available via PDF.
You do not currently have access to this content.