The article provides a review of literature data on the use of different types of Chlorella microalgae for the toxicological assessment of the presence of heavy metals and organic compounds in drinking water sources. Microalgae of the genus Chlorella, such as Chlorella vulgaris Beijer, Chlorella pyrenoidosa, Chlorella fusca are used to assess the toxicological characteristics of surface water sources contaminated with heavy metals and organic compounds. Different microalgae strains show different sensitivity to toxicants: chlorella vulgaris Beijer and chlorella pyrenoidosa are effective against heavy metals, surfactants, drugs, chlorella fusca - against rare-earth elements, heterocyclic compounds. At the same time, the presence of several heavy metals in the water can reduce the accuracy of determining the toxic effect caused by one of them. A scheme of processes accompanying the natural cycle of manganese in freshwater reservoirs has been developed. This scheme allows to determine the role of anthropogenic, geological and atmospheric factors in the contamination of reservoirs with manganese compounds. We have created a computer program "Chlorella 1.1.", which allows to automatically determine the toxicological characteristics of water sources based on the measurement data of the optical density of the chlorella suspension. It allows to determine the deviation of the test reaction from the control, evaluate the toxic multiplicity of dilution, and also calculate the value of the effective EK50 concentration based on data on the determination of dilution values, chlorella growth deviation coefficients, concentrations of toxicants for the toxicity index.

1.
S.
Saroop
,
S.
Tamchos
,
Monitoring and impact assessment approaches for heavy metals
/ Heavy Metals in the Environment, Editor(s): Vinod Kumar, Anket Sharma, Artemi Cerdà,
Elsevier
,
57
86
(
2021
). ISBN 9780128216569,
2.
V. V.
Alexandrova
,
Biotesting as a modern method of assessing the toxicity of natural and wastewater: Monograph
(
Nizhnevartovsk: Publishing House of Nizhnevartovsk State University
,
2013
)
119
p.
3.
P. N.
Linnik
,
B. I.
Nabivanets
,
Forms of metal migration in fresh surface waters
(
L
.:
Hydrometeoizdat
,
1986
)
241
p.
4.
O. A.
Semenova
,
V. L.
Bazelyan
,
G. Yu.
Kolomeichenko
,
A. M.
Yussef
, “
Toxicity of bottom sediments of Lake Kugurlui for various types of freshwater algae
”, in
the Bulletin of the Odessa National University. Biology
,
11
(
9
),
102
110
(
2006
).
5.
V. V.
Kulnev
,
V. A.
Pochechun
, “
Experience of algolization of drinking reservoirs of the Nizhny Tagil industrial hub
”, in
the Biosphere
,
8
(
3
),
287
290
(
2016
).
6.
F.
Almomani
,
R. R.
Bhosale
, “
Bio-sorption of toxic metals from industrial wastewater by algae strains Spirulina platensis and Chlorella vulgaris: Application of isotherm, kinetic models and process optimization
”, in
the Science of The Total Environment
,
755
(
2
),
142654
(
2021
). .
7.
I. A.
Ilyuchik
,
V. N.
Nikandrov
, “
Changes in the proteolytic activity of chlorella vulgaris cell homogenates and functional and metabolic rearrangements of the culture during growth in the presence of MnCl2
”, in
the Bulletin of the Polessk State University. Series of Natural Sciences
,
2
,
25
33
(
2018
).
8.
I. A.
Ilyuchik
,
V. N.
Nikandrov
, “
The effect of MnCl2 on the physiological and biochemical parameters of chlorella vulgaris cells in the state of chlorosis
”, in
the Current Biotechnology
,
3
(
26
),
389
394
(
2018
).
9.
I. A.
Ilyuchik
,
V. N.
Nikandrov
, “
Growth of chlorella culture (chlorella vulgaris) and protein accumulation when MnCl2 is added to the nutrient medium
”, in
the Bulletin of the Polessk State University. Series of Natural Sciences
,
1
,
53
64
(
2018
).
10.
I. A.
Ilyuchik
,
V. N.
Nikandrov
, “
Dynamics of photosynthetic pigments in the culture of chlorella vulgaris algae strain c 111 ibce c-19 when growing on a nutrient medium with the addition of manganese chloride
”, in
the Proceedings of the Belarus National Academy of Sciences. Series of Biological Sciences
,
65
(
3
),
299
309
(
2020
)
11.
R. R.
Muftieva
,
G. A.
Musifullina
,
Ch. Z.
Valieva
, “
Assessment of the toxicity of heavy metal salts on the growth and development of chlorella vulgaris
”, in
the Bulletin of Bashkir State Pedagogical University named after M. Akmulla
,
2
(
50
),
112
117
(
2019
).
12.
Z.
Wang
,
D.
Fu
,
L.
Gao
,
H.
Qi
,
Y.
Su
,
L.
Peng
, “
Aged microplastics decrease the bioavailability of coexisting heavy metals to microalga Chlorella vulgaris
”, in
the Ecotoxicology and Environmental Safety
,
217
,
112199
(
2021
). .
13.
Ch. W.
Hee
,
W. L.
Shing
,
Ch. K.
Chi
, “
Effect of Lead (Pb) exposure towards green microalgae (Chlorella vulgaris) on the changes of physicochemical parameters in water
”, in
the South African Journal of Chemical Engineering
(
2021
) in press .
14.
L.
Zhu
,
T.
Hu
,
Sh.
Li
,
Y.K.
Nugroho
,
B.
Li
,
J.
Cao
,
P.-L.
Show
Hiltunen
E.
Effects of operating parameters on algae Chlorella vulgaris biomass harvesting and lipid extraction using metal sulfates as flocculants
”, in
the Biomass and Bioenergy
,
132
,
105433
(
2020
). .
15.
P.
Saxena
,
V.
Saharan
,
P. K.
Baroliya
,
V. S.
Gour
,
M. K.
Rai
, “
Harish Mechanism of nanotoxicity in Chlorella vulgaris exposed to zinc and iron oxide
”, in
the Toxicology Reports
,
8
,
724
731
(
2021
). .
16.
H.
Li
,
Y.
Zhang
,
J.
Liu
,
Zh.
Shen
,
A.
Li
,
T.
Ma
,
Q.
Feng
,
Y.
Sun
, “
Treatment of high-nitrate wastewater mixtures from MnO2 industry by Chlorella vulgaris
”, in
the Bioresource Technology
,
291
,
121836
(
2019
). .
17.
O. A.
Zadorozhnaya
,
D. O.
Kirsanov
,
Yu. G.
Vlasov
,
V. D.
Tonkopiy
,
V. N.
Rybakin
,
A. O.
Zagrebin
,
A. V.
Legin
, “
Determination of integral toxicity of water in terms of biotesting using a multisensory system sensitive to individual toxicants
”, in
the Journal of Applied Chemistry
,
87
(
4
),
416
423
(
2014
).
18.
N. C.
Di
,
A.
Macagnano
,
F.
Davide
,
A.
D'Amico
,
A.
Legin
,
Y.
Vlasov
,
A.
Rudnitskaya
,
B.
Selezenev
Multicomponent analysis on polluted waters by means of an electronic tongue
”, in
the Sens. Actuators B.
,
44
(
1-3
),
423
428
(
1997
).
19.
A.
Gutés
,
F.
Cespedes
,
M.
del Valle
,
D.
Louthander
,
C.
Krantz-Rülcker
,
F.
Winquist
, “
A flow injection voltammetric electronic tongue applied to paper mill industrial waters
”, in
the Sen. and Actuat. B
,
115
(
1
),
390
395
(
2006
).
20.
K. S.
Kumar
,
H.-U.
Dahms
,
J.-S.
Lee
,
H. Ch.
Kim
,
W. Ch.
Lee
,
K.-H.
Shin
, “
Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence
”, in
the Ecotoxicology and Environmental Safety
,
104
,
51
71
(
2014
). .
21.
E. A.
Tyutkova
,
Yu. S.
Grigoriev
, “
Sensitivity of biotests based on chlorella and scenedesmus algae to heavy metals
”, in
the Theoretical and Applied Ecology
,
2
,
57
60
(
2014
).
22.
A.
León-Vaz
,
L. C.
Romero
,
C.
Gotor
,
R.
León
,
J.
Vigara
, “
Effect of cadmium in the microalga Chlorella sorokiniana: A proteomic study
”, in
the Ecotoxicology and Environmental Safety
,
207
,
111301
(
2021
). .
23.
J.
Jaafari
,
K.
Yaghmaeian
, “
Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM
)”, in
the Chemosphere
,
217
,
447
455
(
2019
) .
24.
C.
Urrutia
,
E.
Yañez-Mansilla
,
D.
Jeison
, “
Bioremoval of heavy metals from metal mine tailings water using microalgae biomass
”, in
the Algal Research
,
43
,
101659
(
2019
). .
25.
Q.
Xie
,
N.
Liu
,
D.
Lin
,
R.
Qu
,
Q.
Zhou
,
F.
Ge
, “
The complexation with proteins in extracellular polymeric substances alleviates the toxicity of Cd (II) to Chlorella vulgaris
”, in
the Environmental Pollution
,
263
,
114102
(
2020
).
26.
V. R.
Moreira
,
Y. A. R.
Lebron
,
L. V. S.
Santos
, “
Predicting the biosorption capacity of copper by dried Chlorella pyrenoidosa through response surface methodology and artificial neural network models
”, in
the Chemical Engineering Journal Advances
,
4
,
100041
(
2020
) .
27.
C.
Adochite
,
L.
Andronic
, “
Aquatic Toxicity of Photocatalyst Nanoparticles to Green Microalgae Chlorella vulgaris
”, in
the Water
,
13
(
1
),
77
(
2021
).
28.
V. A.
Polynov
,
L. A.
Kopylova
, “
Comparative characteristics of the sensitivity of the algological biotest to the action of heavy metals in optimal and stressful conditions
”, in
the Science yesterday, today, tomorrow
,
8
(
42
),
5
9
(
2017
).
29.
A.
Martín-González
,
S.
Díaz
,
S.
Borniquel
,
A.
Gallego
,
J. C.
Gutiérrez
, “
Cytotoxicity and bioaccumulation of heavy metals by ciliated protozoa isolated from urban wastewater treatment plants
”, in
the Research in Microbiology
,
157
(
2
),
108
118
(
2006
). .
30.
U. N.
Rai
,
N. K.
Singh
,
A. K.
Upadhyay
,
S.
Verma
, “
Chromate tolerance and accumulation in Chlorella vulgaris L.: Role of antioxidant enzymes and biochemical changes in detoxification of metals
”, in
the Bioresource Technology
,
136
,
604
609
(
2013
). .
31.
Md.A.
Alam
,
Ch.
Wan
,
X.-Q.
Zhao
,
L.-J.
Chen
,
J.-Sh.
Chang
,
F.-W.
Bai
, “
Enhanced removal of Zn2+ or Cd2+ by the flocculating Chlorella vulgaris JSC-7
”, in
the Journal of Hazardous Materials
,
289
,
38
45
(
2015
).
32.
Md. A.
Alam
,
Ch.
Wan
,
S.-L.
Guo
,
X.-Q.
Zhao
,
Z.-Y.
Huang
,
Y.-L.
Yang
,
J.-S.
Chang
,
F.-W.
Bai
, “
Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7
”, in
the Journal of Bioscience and Bioengineering
,
118
(
1
)1,
29
33
(
2014
). .
33.
T. I.
Evseeva
,
E. S.
Belykh
,
T. A.
Maystrenko
, “
Patterns of Chlorella Vulgaris Beljer reaction to cadmium exposure and modification of its toxic effect by caffeine and butyonine sulfoximine
”, in
the Bulletin of the Institute of Biology of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences
8
(
106
),
2
6
(
2006
).
34.
V.
Lysenko
,
K.
Alexey
,
A.
Kunitsyna
, “
Chlorophyll fluorescence kinetics and oxygen release in Chlorella vulgaris cells: blue and red light
”, in
the Journal of Plant Physiology
,
258
259
(
2021
).
35.
G.
Agati
,
Z.G.
Cerovic
,
I.
Moya
, “
The Effect of Decreasing Temperature up to Chilling Values on the in vivo F685/F735 Chlorophyll Fluorescence Ratio in Phaseolus vulgaris and Pisum sativum: The Role of the Photosystem I Contribution to the 735 nm Fluorescence Band
”,
Photochemistry and Photobiology
,
72
,
75
84
(
2000
)).
36.
A. A.
Rudkova
,
A. A.
Roytman
,
T. V.
Zamaraeva
, “
The effect of cadmium on the growth of unicellular algae at different values of acidity of the medium
”, in
the Problems of ecological monitoring and modeling of ecosystems
(
Leningrad
,
Hydrometeoizdat
,
1988
)
11
,
129
-
141
37.
I. S.
Ryzhkina
,
Yu. V.
Kiseleva
,
L. I.
Murtazina
,
T. V.
Kuznetsova
,
E. R.
Zainulgabidinov
,
I. V.
Knyazev
,
A. M.
Petrov
,
S. E.
Kondakov
,
A. I.
Konovalov
, “
Diclofenac sodium aqueous systems at low concentrations: Interconnection between physicochemical properties and action on hydrobionts
”, in
the Journal of Environmental Sciences
,
88
,
177
186
(
2020
). .
38.
I. S.
Ryzhkina
,
L. I.
Murtazina
,
S. Yu.
Sergeeva
,
L. A.
Kostina
,
D. A.
Sharapova
,
M. D.
Shevelev
,
A. I.
Konovalov
, “
Fluorescence characteristics of aqueous dispersed systems of succinic acid as potential markers of their self-organization and bioeffects in low concentration range
”, in
the Environmental Technology & Innovation
,
21
,
101215
(
2021
).
This content is only available via PDF.
You do not currently have access to this content.