In this study, chromium oxide (Cr2O3) nanoparticles was synthesized by cold plasma method using the plasma-jet technique. colloidal chromium oxide nanoparticles prepared using chromium nitrate CrNO3 as the precursor in 1 mM molar concentration by de-ionized water as the solvent agent. Additionally, using fructose as natural capping agent in order to prevent the agglomeration and sedimentation of the produced nanoparticles and its role in the size of nanoparticles. The plasma is generated with argon gas by dielectric barrier discharge jet. Cr2O3 NPs are produced instantly once the plasma is ignited. The samples are characterized by UV-visible absorbance. UV-vis spectra indicated the presence of two well-defined peaks in their spectrums, at wavelengths are 425 nm and 587 nm respectively, which is a common feature of Cr2O3 NPs. The elemental composition of prepared nanoparticles and their concentration has been determined by Inductively Coupled Plasma Mass Spectrometry (ICP-mass), and the results showed that Chromium nanoparticles concentration increased with an increase in plasma exposure times. Determination of particle size and surface charge of NPS are have been for proper characterization of NPs by DLS (dynamic light scattering) and ZP (zeta potential) measurements. The structure of the prepared sample was examined by X-ray diffraction (XRD). For calculating crystalline size, the Shearer formula is used. The surface morphology was studied using a Field emission scanning electron microscopy (FESEM). The obtained results infer that synthesized Cr2O3NPs are in Rhombohedral shape, not crystallized very well with an average crystallite size of 32 nm nm. Synthesized Cr2O3 NPs were subjected to cold plasma to more period with adding fructose led to an increase in the crystallization of the substance and a decrease in the particle size to about 18nm.

1.
M.
Fernández-García
,
A.
Martínez-Arias
,
J.C.
Hanson
,
J. A.
Rodriguez
,
Chem. Rev.
104
,
4063
4104
(
2004
).
2.
B. T.
Sone
,
E.
Manikandan
,
A.
Gurib-Fakim
and
M.
Maaza
,
Green Chem. Lett. Rev.
9
,
85
90
(
2016
).
3.
M.
Mohammadtaheri
,
Q.
Yang
,
Y.
Li
and
J.
Corona-Gomez
,
Coatings
8
,
1
14
(
2018
).
4.
T.
Tsoncheva
,
Et Al. Appl. Surf. Sci.
257
,
523
530
(
2010
).
5.
X.
Yang
,
X.
Peng
,
C.
Xu
,
F.
Wang
,
J. Electrochem. Soc.
156
,
C167
(
2009
).
6.
T. M.
Al-saadi
, (
2019
) doi:.
7.
M.
Aghaie-Khafri
and
S.
Navazany
,
Micro Nano Lett.
9
,
351
354
(
2014
).
8.
O.
Jankovský
,
D.
Sedmidubský
,
Z.
Sofer
,
J.
Luxa
,
V.
Bartůněk
,
Ceram. Int.
41
,
4644
4650
(
2015
).
9.
K.
Anandan
,
V.
Rajendran
, Sheet,
Mater. Lett.
146
,
99
102
(
2015
).
10.
F.
Rezaei
,
P.
Vanraes
,
A.
Nikiforov
,
R.
Morent
and
N.
De Geyter
, (
2019
).
11.
L.
Shen
, ET Al. 
ceram. Int.
45
,
23578
23585
(
2019
)
12.
O. M.
Kotb
,
F. M. A.
El-Latif
,
A. R.
Atawia
,
S S.
,
Saleh
,
S. F.
El-Gioushy
.
Asian J. Biotechnol. Bioresour. Technol.
6
,
22
30
(
2020
).
13.
Ghotekar
,
S.
,
Pansambal
,
S.
,
Bilal
,
M.
,
Pingale
,
S. S.
&
Oza
,
R.
Chem. Environ. Eng.
3
,
100089
(
2021
).
14.
Mohamed
,
H. E. A.
Et Al. Nanomedicine
15
,
1653
1669
(
2020
).
15.
Sharma
,
U. R.
&
Sharma
,
N.
Biointerface Res. Appl. Chem.
11
,
8402
8412
(
2021
).
16.
Wang
,
X.
,
Jin
,
X.
,
Zhou
,
M.
,
Chen
,
Z.
&
Deng
,
K.
Electrochim. Acta
112
,
692
697
(
2013
).
17.
Liu
,
B.
Thesis-LIUBo.
248
pages (
2019
).
18.
Yuchen
Luo
1,
Amanda
M.
Lietz
2,
Shurik
Yatom
1, #,
M. J.
K.
and &
Bruggeman
1,
P. J.
d M us pt.
indices Zeolite LTA Fram.
11
14
(
2018
).
19.
Theivasanthi
,
T.
&
Alagar
,
M.
Nano Biomed. Eng.
4
,
58
65
(
2012
).
20.
Jamróz
,
P.
,
Dzimitrowicz
,
A.
,
Greda
,
K.
&
Pohl
,
P.
Conference: International Symposium on Plasma Chemistry ISPC-22. At: Antwerp, Belgium
Volume:
P-I-3-30
.,
1
4
(
2015
).
21.
Singh
,
G.
Et Al. J. Mater. Sci. Mater. Electron.
29
,
7364
7371
(
2018
).
22.
Ali
,
A. M.
,
Mohammed
,
A. S.
&
Hanfoosh
,
S. M.
J. Ovonic Res.
17
,
239
245
(
2021
).
23.
Shuaib
,
U.
 ET Al..
Mater. Res. Express
7
, (
2020
).
24.
Abdelaal
,
H. M.
&
Harbrecht
,
B.
Comptes Rendus Chim.
18
,
379
384
(
2015
).
25.
Weckhuysen
,
B. M.
&
Schoonheydt
,
R. A.
Studies in Surface Science and Catalysis
Vol.
84
965
972
(
1994
).
26.
Tian
,
S.
Et Al. Int. J. Electrochem. Sci.
14
,
8805
8818
(
2019
).
27.
Rajendran
2,
J. A.
and V.
International journal of engineering sciences & research technology chromia (cr 2 o 3
).
6
,
916
921
(
2017
).
28.
Mahmood
,
S.
 Et al.,
Engineering and Applied Science Letters
1
(
2
):
23
29
(
2018
)
29.
Murtazaev
,
A. K.
,
Kamilov
,
I. K.
&
Aliev
,
K. K.
J. Magn. Magn. Mater.
204
,
151
158
(
1999
).
30.
Cao
,
H.
,
Qiu
,
X.
,
Liang
,
Y.
,
Zhao
,
M.
&
Zhu
,
Q.
Appl. Phys. Lett.
88
,
1
4
(
2006
).
31.
Iqbal
,
J.
,
Munir
,
A.
&
Uddin
,
S.
Microscopy Research and Technique
83
,
1
14
(
2020
) doi:.
32.
Iacob
,
M.
Et Al. Mater. Res. Bull.
65
,
163
168
(
2015
).
33.
Aljabali
,
A. A. A.
Et Al. IOP Conf. Ser. Mater. Sci. Eng.
305
, (
2018
).
34.
Jingfang
,
Z.
,
Beattie
,
D. A.
,
Ralston
,
J.
&
Sedev
,
R.
Langmuir
23
,
12096
12103
(
2007
).
35.
Basheva
,
E. S.
,
Kralchevsky
,
P. A.
,
Danov
,
K. D.
,
Ananthapadmanabhan
,
K. P.
&
Lips
,
A.
Phys. Chem. Chem. Phys.
9
,
5183
5198
(
2007
).
36.
Wu
,
C.
MASTERS THESES.
(
2012
).
37.
Gruyter
,
D. E.
Physical Sciences Reviews.
1
14
(
2017
) doi:.
This content is only available via PDF.
You do not currently have access to this content.