Actual evapotranspiration (ET) is an important variable used for hydrological cycle analysis, drought monitoring, and water resources management. Field measurement of ET requires a lot of time, money and also produces non-spatial ET values. Satellite-based estimations give advantages to calculate evapotranspiration at a regional scale. This study aimed to assess the accuracy of estimated ET based on SEBAL using Landsat 8 imagery, and to determine the ET variation in relation with land cover in Semarang area. The analysis was carried out using Landsat-8 (OLI/TIRS) imagery recorded on April 24, 2020 and October 1, 2020, SRTM data and reference weather parameters. The estimated ET SEBAL was compared with Pan evaporation data, Penman-Monteith, and Advection Aridity. The study showed that the estimated ET errors between the ET estimates from SEBAL and Pan Evaporation, Penman-Monteith and Advection Aridity were less than or equal to 1.00 mm/day, but ET SEBAL estimate was not suitable in water bodies. Closed canopy vegetation had a higher ET value and metal rooftop had the lowest ET value.

1.
G. G.
Katul
,
R.
Oren
,
S.
Manzoni
,
C.
Higgins
, and
M. B.
Parlange
, “
Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system
,”
Rev. Geophys.
, vol.
50
, no.
3
,
2012
, DOI: .
2.
M. C.
Anderson
,
J. M.
Norman
,
J. R.
Mecikalski
,
J. A.
Otkin
, and
W. P.
Kustas
, “
A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: Model formulation
,”
J. Geophys. Res. Atmos.
, vol.
112
, no.
10
, pp.
1
17
,
2007
, DOI: .
3.
H.
Jassas
,
W.
Kanoua
, and
B.
Merkel
, “
Actual evapotranspiration in the Al-Khazir Gomal Basin (Northern Iraq) using the surface energy balance algorithm for land (SEBAL) and water balance
,”
Geosci.
, vol.
5
, no.
2
, pp.
141
159
,
2015
, DOI: .
4.
A.
Elnmer
,
M.
Khadr
,
S.
Kanae
, and
A.
Tawfik
, “
Mapping daily and seasonally evapotranspiration using remote sensing techniques over the Nile delta
,”
Agric. Water Manag.
, vol.
213
, no. November 2018, pp.
682
692
,
2019
, DOI: .
5.
O. K.
Hartogensis
,
U.
Weisensee
,
J.
Evans
,
A. J. H.
van Kesteren
, and
F.
Beyrich
, “
First Results of two Optical Millimeter-wave Scintillometer Systems during LITFASS2009
,”
10th EMS Annu. Meet. 10th Eur. Conf. Appl. Meteorol. Abstr. held Sept. 13–17, 2010
Zürich, Switzerland
. http//meetings.copernicus.org/ems2010/,id.EMS2010-357, vol.
1
, p.
357
,
2010
.
6.
P.
Karimi
,
W. G. M.
Bastiaanssen
, and
D.
Molden
, “
Water Accounting Plus (WA+) - A water accounting procedure for complex river basins based on satellite measurements
,”
Hydrol. Earth Syst. Sci.
, vol.
17
, no.
7
, pp.
2459
2472
,
2013
, DOI: .
7.
Y. A.
Liou
and
S. K.
Kar
, “
Evapotranspiration estimation with remote sensing and various surface energy balance algorithms-a review
,”
Energies
, vol.
7
, no.
5
, pp.
2821
2849
,
2014
, DOI: .
8.
B.
Bensouleh
,
A.
Karimi
, and
H.
Hesadi
, “
Evaluation of SEBAL and SEBS Algorithms in the Estimation of Maize Evaluation of SEBAL and SEBS Algorithms in the Estimation of Maize Evapotranspiration
,” no. November
2019, 2015
, DOI: .
9.
K. I. N.
Rahmi
and
P.
Danoedoro
, “
Estimation of actual evapotranspiration using surface energy balance approach and Landsat-8 images of semarang area, Central Java
,”
ACRS 2015 - 36th Asian Conf. Remote Sens. Foster. Resilient Growth Asia, Proc., no. May 2016
,
2015
.
10.
V.
Sharma
,
A.
Kilic
, and
S.
Irmak
, “
Impact of scale/resolution on evapotranspiration from Landsat and MODIS images
,”
Water Resour. Res.
, vol.
52
, no.
3
, pp.
1800
1819
,
2016
, DOI: .
11.
S. H.
Mahmoud
and
A. A.
Alazba
, “
A coupled remote sensing and the Surface Energy Balance based algorithms to estimate actual evapotranspiration over the western and southern regions of Saudi Arabia
,”
J. Asian Earth Sci.
, vol.
124
, pp.
269
283
,
2016
, DOI: .
12.
R.
Trezza
,
R. G.
Allen
, and
M.
Tasumi
, “
Estimation of actual evapotranspiration along the Middle Rio Grande of New Mexico using MODIS and landsat imagery with the METRIC model
,”
Remote Sens.
, vol.
5
, no.
10
, pp.
5397
5423
,
2013
, DOI: .
13.
A. H. C.
de Teixeira
and
W. G. M.
Bastiaanssen
, “
Five methods to interpret field measurements of energy fluxes over a micro-sprinkler-irrigated mango orchard
,”
Irrig. Sci.
, vol.
30
, no.
1
, pp.
13
28
,
2012
, DOI: .
14.
N.
Bhattarai
,
S. B.
Shaw
,
L. J.
Quackenbush
,
J.
Im
, and
R.
Niraula
, “
Evaluating five remote sensing based single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate
,”
Int. J. Appl. Earth Obs. Geoinf.
, vol.
49
, pp.
75
86
,
2016
, DOI: .
15.
P.
Wagle
,
N.
Bhattarai
,
P. H.
Gowda
, and
V. G.
Kakani
, “
Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum
,”
ISPRS J. Photogramm. Remote Sens.
, vol.
128
, pp.
192
203
,
2017
, DOI: .
16.
L.
Jia
,
G.
Xi
,
S.
Liu
,
C.
Huang
,
Y.
Yan
, and
G.
Liu
, “
Regional estimation of daily to annual evapotranspiration with MODIS data in the Yellow River Delta wetland
,”
Hydrol. Earth Syst. Sci. Discuss.
, vol.
6
, no.
2
, pp.
2301
2335
,
2009
, DOI: .
17.
Z.
Sun
,
B.
Wei
,
W.
Su
,
W.
Shen
,
C.
Wang
, and
D.
You
, “
Evapotranspiration estimation based on the SEBAL model in the Nansi Lake Wetland of China
,”
Math. Comput. Model.
, vol.
54
, no.
3
–4, pp.
1086
1092
,
2011
, DOI: .
18.
X. C.
Zhang
,
J. W.
Wu
,
H. Y.
Wu
, and
Y.
Li
, “
Simplified SEBAL method for estimating vast areal evapotranspiration with MODIS data
,”
Water Sci. Eng.
, vol.
4
, no.
1
, pp.
24
35
,
2011
, DOI: .
19.
A. A. F.
Beg
,
A. H.
Al-Sulttani
,
A.
Ochtyra
,
A.
Jarocińska
, and
A.
Marcinkowska
, “
Estimation of Evapotranspiration Using SEBAL Algorithm and Landsat-8 Data—A Case Study: Tatra Mountains Region
,”
J. Geol. Resour. Eng.
, vol.
4
, no.
6
, pp.
257
270
,
2016
, DOI: .
20.
C.
Grosso
 et al., “
Mapping Maize Evapotranspiration at Field Scale Using SEBAL : A Comparison with the FAO Method and Soil-Plant Model Simulations
,”
Remote Sens.
, vol.
10
, no.
2018
, pp.
1
17
,
2018
, DOI: .
21.
M.
Ilme
,
B.
Wu
,
X.
Zhu
, and
S.
Wang
, “
Improving remote sensing based evapotranspiration modelling in a heterogeneous urban environment
,” vol.
581
, no. November
2019, 2020
, DOI: .
22.
W. G. M.
Bastiaanssen
,
E. J. M.
Noordman
,
H.
Pelgrum
,
G.
Davids
,
B. P.
Thoreson
, and
R. G.
Allen
, “
SEBAL Model with Remotely Sensed Data to Improve Water-Resources Management under Actual Field Conditions
,”
J. Irrig. Drain. Eng.
, vol.
131
, no.
1
, pp.
85
93
,
2005
, DOI: ).
23.
K.
Singh
,
A.
Bala
,
S.
Kumar
, and
R.
Kumar
, “
Quantification of wheat crop evapotranspiration and mapping : A case study from Bhiwani District of Haryana , India
,”
Agric. Water Manag.
, vol.
187
, pp.
200
209
,
2017
, DOI: .
24.
W. G. M.
Bastiaanssen
,
M.
Menenti
,
R. A.
Faddes
, and
A. A. M.
Holtslag
, “
A remote sensing surface energy balance algorithm for land ( SEBAL
),”
J. Hydrol.
, no. January, pp.
198
212
,
1998
.
25.
A. O.
Ebenezer
, O. E. C., and A. F. O., “
Mapping Evapotranspiration for different Landcover in the Lake Chad Region of Nigeria using Landsat Datasets
,”
J. Remote Sens. Technol.
, vol.
4
, no.
1
, pp.
58
69
,
2016
, DOI: .
26.
N.
Bhattarai
,
L. J.
Quackenbush
,
J.
Im
, and
S. B.
Shaw
, “
A new optimized algorithm for automating endmember pixel selection in the SEBAL and METRIC models
,”
Remote Sens. Environ.
, vol.
196
, pp.
178
192
,
2017
, DOI: .
27.
W.
Bastiaanssen
, Regionalization of surface flux densities and moisture indicators in composite terrain. 
The Netherlands
,
1995
.
28.
A.
Ershadi
,
M. F.
Mccabe
,
J. P.
Evans
, and
J. P.
Walker
, “
Remote Sensing of Environment Effects of spatial aggregation on the multi-scale estimation of evapotranspiration
,”
Remote Sens. Environ.
, vol.
131
, pp.
51
62
,
2013
, DOI: .
29.
W.
Brutsaert
and
H.
Stricker
, “
An advection-aridity approach to estimate actual regional evapotranspiration
,”
Water Resour. Res.
, vol.
15
, no.
2
, pp.
443
450
,
1979
, DOI: .
30.
R. G.
Allen
,
L. S.
Pereira
,
D.
Raes
, and
M.
Smith
, “
Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage
,”
Irrig. Drain.
, vol.
300
, no.
56
, p.
300
,
1998
, DOI: .
31.
Badan Pusat Statistik Kota Semarang
,
Kota semarang Dalam Angka 2020
.
2020
.
32.
P.
Danoedoro
, Pengantar Penginderaan Jauh Digital.
Yogyakarta
:
Andi Offset
,
2012
.
33.
Sutanto, Penginderaan Jauh Jilid II.
Yogyakarta
:
Gadjah Mada University Press
,
1994
.
34.
J. R.
Jensen
, Remote Sensing of the Environtment An Earth Resource Perspective Second Edition.
England
:
Pearson Educaton Limited
,
2014
.
35.
R.
Waters
,
A.
Richard
,
M.
Tasumi
,
R.
Trezza
, and
W.
Bastiaanssen
,
Surface Energy Balance Algorithms for Land Idaho Implementation
.
2002
.
36.
P.
Karimi
and
W. G. M.
Bastiaanssen
, “
Spatial evapotranspiration, rainfall and land use data in water accounting - Part 1: Review of the accuracy of the remote sensing data
,”
Hydrol. Earth Syst. Sci.
, vol.
19
, no.
1
, pp.
507
532
,
2015
, DOI: .
37.
R. P.
Dewa
and
P.
Danoedoro
, “
The effect of image radiometric correction on the accuracy of vegetation canopy density estimate using several Landsat-8 OLI’s vegetation indices: A case study of Wonosari area, Indonesia
,”
IOP Conf. Ser. Earth Environ. Sci.
, vol.
54
, no.
1
,
2017
, DOI: .
38.
C.
Polykretis
,
M. G.
Grillakis
, and
D. D.
Alexakis
, “
Exploring the impact of various spectral indices on land cover change detection using change vector analysis: A case study of Crete Island, Greece
,”
Remote Sens.
, vol.
12
, no.
2
,
2020
, DOI: .
39.
R. .
Smith
, “
The heat budget of the earth ’ s surface deduced from space
,”
Terrain, no. 0
, pp.
1
10
,
2010
.
40.
M.
Van Noordwijk
 et al., “
Agroforestry and watershed functions of tropical land use mosaics
,”
2003
.
41.
K.
Garang
 et al., “
Antisipasi Penduduk Dalam Menghadapi Banjir Kali Garang Kota Semarang
,”
Forum Ilmu Sos.
, vol.
35
, no.
2
, pp.
171
181
,
2011
, DOI: .
42.
R. J.
Kodoatie
, Banjir: Beberapa Penyebab dan Metode Pengendaliannya dalam Perspektif Lingkungan.
Yogyakarta
:
Pustaka Pelajar
,
2002
.
43.
S.
Zamani
and
M.
Rahimzadegan
, “Evaluation of SEBS , SEBAL , and METRIC models in estimation of the evaporation from the freshwater lakes (
Case study : Amirkabir dam
,
Iran
),”
J. Hydrol.
, vol.
561
, no. March, pp.
523
531
,
2018
, DOI: .
44.
G.
Papadavid
 et al., “
Using SEBAL to investigate how variations in climate impact on crop evapotranspiration
,”
J. Imaging
, vol.
3
, no.
3
,
2017
, DOI: .
45.
F. D. D.
Arraes
,
M. G.
da Silva
,
E. G. C.
Junior
,
J. B.
Oliveira
, and
E. R. F.
Lêdo
, “
Estimativa da evapotranspiração e umidade do solo usando dados de sensores orbitais em área irrigada
,”
Congr. Norte Nord. Pesqui. e Inovação
,
2012
.
46.
P. F. C.
Monteiro
,
D. C.
Fontana
,
T. V. dos
Santos
, and
D. R.
Roberti
, “
Estimativa dos componentes do balanço de energia e da evapotranspiração para áreas de cultivo de soja no sul do brasil utilizando imagens do sensor TM landsat 5
,”
Bragantia
, vol.
73
, no.
1
, pp.
72
80
,
2014
, DOI: .
This content is only available via PDF.
You do not currently have access to this content.