Built-up area are covering less than one percent but are estimated grow rapidly due to human population and economy activities. The built-up area information is crucial for measuring achievement of Sustainable Development Goals (SDGs) number 11 in.making sustainable cities. Supervised machine learning from public satellite imagery, such as Landsat 8 and VIIRS-DNB, is one of method to achieve that information. In this paper, comparison of supervised algorithms is conducted to measure the performance and the ability to classify the built-up class and non built-up. Algorithms used here are Support Vector Machine (SVM), Random Forest, and Extreme Gradient Boosting (XGBoost). The research focused on distinguish built-up area in six metropolitan area of Indonesia. Parameter tuning are conducted to get the best model of every algorithm in each area. Using Area Under Receiver Operating Characteristic (AUROC) as comparison indicator, XGBoost outperformed other algorithms in five metropolitan areas. Using best model in each area, built-up area classification was conducted in 2014 and mostly built-up area was shown accumulated in center. Then, built-up transformation was measured from 2015 to 2019 and found that Jabodetabek and Kedungsepur experienced the larger built-up area transformation compared the others.

1.
UN
,
D.
(
2015
). World urbanization prospects: The 2014 revision. United Nations Department of Economics and Social Affairs,
Population Division
:
New York, NY, USA
,
41
.
2.
Desa
,
U. N.
(
2016
).
Transforming our world: The 2030 agenda for sustainable development
.
3.
Widiantono
,
D. J.
, &
Soepriadi
,
I.
(
2008
).
Measure the performance of cities in Indonesia. [Menakar Kinerja Kota Kota Di Indonesia]. Bulletin Penata Ruang Nomor 1, 4
.
4.
Goldblatt
,
R.
,
Deininger
,
K.
, &
Hanson
,
G.
(
2018
).
Utilizing publicly available satellite data for urban research: Mapping built-up land cover and land use in Ho Chi Minh City, Vietnam
.
Development Engineering
,
3
,
83
99
.
5.
Dou
,
Y.
,
Liu
,
Z.
,
He
,
C.
, &
Yue
,
H.
(
2017
).
Urban land extraction using VIIRS nighttime light data: An evaluation of three popular methods
.
Remote Sensing
,
9
(
2x
),
175
.
6.
Melchiorri
,
M.
,
Pesaresi
,
M.
,
Florczyk
,
A. J.
,
Corbane
,
C.
, &
Kemper
,
T.
(
2019
).
Principles and applications of the global human settlement layer as baseline for the land use efficiency indicator—SDG 11.3. 1
.
ISPRS International Journal of Geo-Information
,
8
(
2
),
96
.
7.
Mountrakis
,
G.
,
Im
,
J.
, &
Ogole
,
C.
(
2011
).
Support vector machines in remote sensing: A review
.
ISPRS Journal of Photogrammetry and Remote Sensing
,
66
(
3
),
247
259
.
8.
Belgiu
,
M.
, &
Drăguţ
,
L.
(
2016
).
Random forest in remote sensing: A review of applications and future directions
.
ISPRS Journal of Photogrammetry and Remote Sensing
,
114
,
24
31
.
9.
Bhagwat
,
R. U.
, &
Shankar
,
B. U.
(
2019
, March).
A novel multilabel classification of remote sensing images using XGBoost
.
In 2019 IEEE 5th International Conference for Convergence in Technology (I2CT
) (pp.
1
5
).
IEEE.
10.
Hidajat
,
J.T.
,
Sitorus
,
S.R.P
,
Rustiadi
,
E.
&
Machfud
(
2014
): Sustainable area management model in Jabodetabek Metropolitan suburbs [Model Pengelolaan Kawasan Berkelanjutan di Pinggiran Kota Metropolitan Jabodetabek].
Bogor, IPB
11.
Corbane
,
Christina
;
Florczyk
,
Aneta
;
Pesaresi
,
Martino
;
Politis
,
Panagiotis
;
Syrris
,
Vasileios
(
2018
):
GHS built-up grid, derived from Landsat, multitemporal (1975-1990-2000-2014), R2018A. European Commission, Joint Research Centre (JRC
) doi: PID: http://data.europa.eu/89h/jrc-ghsl-10007
12.
Liu
,
C.
,
Yang
,
K.
,
Bennett
,
M. M.
,
Guo
,
Z.
,
Cheng
,
L.
, &
Li
,
M.
(
2019
).
Automated Extraction of Built-Up Areas by Fusing VIIRS Nighttime Lights and Landsat-8 Data
.
Remote Sensing
,
11
(
13
),
1571
.
13.
Chen
,
Lin
, et al. "
Quantifying urban land sprawl and its driving forces in Northeast China from 1990 to 2015
."
Sustainability
10
.
1
(
2018
):
188
.
14.
He
,
C.
,
Liu
,
Z.
,
Gou
,
S.
,
Zhang
,
Q.
,
Zhang
,
J.
, &
Xu
,
L.
(
2019
).
Detecting global urban expansion over the last three decades using a fully convolutional network
.
Environmental Research Letters
,
14
(
3
),
034008
.
15.
Sekertekin
,
A.
, &
Bonafoni
,
S.
(
2020
).
Land Surface Temperature Retrieval from Landsat 5, 7, and 8 over Rural Areas: Assessment of Different Retrieval Algorithms and Emissivity Models and Toolbox Implementation
.
Remote Sensing
,
12
(
2
),
294
.
16.
Ma
,
T.
,
Yin
,
Z.
, &
Zhou
,
A.
(
2018
).
Delineating spatial patterns in human settlements using VIIRS nighttime light data: A watershed-based partition approach
.
Remote Sensing
,
10
(
3
),
465
.
17.
Bazi
,
Y.
, &
Melgani
,
F.
(
2006
).
Toward an optimal SVM classification system for hyperspectral remote sensing images
.
IEEE Transactions on geoscience and remote sensing
,
44
(
11
),
3374
3385
.
18.
Pal
,
M.
(
2005
).
Random forest classifier for remote sensing classification
.
International Journal of Remote Sensing
,
26
(
1
),
217
222
.
19.
Chen
,
T.
, &
Guestrin
,
C.
(
2016
, August).
Xgboost: A scalable tree boosting system
.
In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining
(pp.
785
794
).
20.
Ling
,
C. X.
,
Huang
,
J.
, &
Zhang
,
H.
(
2003
, August).
AUC: a statistically consistent and more discriminating measure than accuracy. In Ijcai
(Vol.
3
, pp.
519
524
).
21.
De Leeuw
,
J.
,
Jia
,
H.
,
Yang
,
L.
,
Liu
,
X.
,
Schmidt
,
K.
, &
Skidmore
,
A. K.
(
2006
).
Comparing accuracy assessments to infer superiority of image classification methods
.
International Journal of Remote Sensing
,
27
(
1
),
223
232
.
22.
Gorelick
,
N.
,
Hancher
,
M.
,
Dixon
,
M.
,
Ilyushchenko
,
S.
,
Thau
,
D.
, &
Moore
,
R.
(
2017
).
Google Earth Engine: Planetary-scale geospatial analysis for everyone
.
Remote sensing of Environment
,
202
,
18
27
.
23.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
, … &
Vanderplas
,
J.
(
2011
).
Scikit-learn: Machine learning in Python
.
the Journal of machine Learning research
,
12
,
2825
2830
.
24.
Gillies
,
S.
,
Ward
,
B.
, &
Petersen
,
A. S.
(
2013
).
Rasterio: geospatial raster I/O for Python programmers. URL
https://github. com/mapbox/rasterio.
This content is only available via PDF.
You do not currently have access to this content.