Customer churn has become a big problem for telecommunication companies. Preventive efforts are needed by predicting the value of churn in the future. This study uses data mining techniques with decision tree algorithms to predict customer churn in one of Indonesian Telecommunication companies. The best decision tree model has parameters of criterion information gain with a minimal gain = 0.01 and a max depth = 6. This decision tree model has an accuracy value of 78.28% with 19,6% customer churn rate. Based on this model, customers of this company tend to have voluntary churns. Some important factors that affect customer churn are type of contract, number of monthly downloads, tenure, customer satisfaction value, and add on. The type of contract has the highest impact on the customer churn in this company. Based on the results, the company is suggested to promote a retention program based in order to decrease customer churn rate.

1.
R.
Dass
and
R.
Jain
, “
Association for Information Systems AIS Electronic Library (AISeL) An Analysis on the factors causing telecom churn: First Findings
,”
2011
.
2.
M.
Arifin
, “
Business Intelligence Untuk Customer Churn Telekomunikasi
,”
Pros. SNATIF
, no.
1
, pp.
279
286
,
2014
.
3.
V.
Heppy
A.,
Analisa Industri Telekomunikasi Indonesia untuk Mendukung Efisiensi.
Puslitbang SDPPI
.
2018
.
4.
B. Y.
Setyaleksana
,
Suharyono
, and
E.
Yulianto
, “
Pengaruh Customer Relation Ship Management (CRM) Terhadap Kepuasan Dan Loyalitas Pelanggan
,”
J. Adm. Bisnis
, vol.
46
, no.
1
, pp.
45
51
,
2017
.
5.
D. T.
Larose
and
C. D.
Larose
,
Discovering knowledge in data an introduction to data mining. Second edition Wiley series on methods and applications in data mining.
2014
.
6.
E.
Hanif
, “
Applications of Data Mining Techniques for Churn Prediction and Cross-selling in the Telecommunications Industry
,”
Dublin Business School jurnal
,
2019
.
7.
M. F. Yaya sudarya
triana
, “
analisa customer lifetime value untuk pengambilan keputusan
,”
j. Chem. Inf. Model.
, vol.
53
, no.
9
, pp.
1689
1699
,
2019
.
8.
R.
Poniman
,
O.
Salim
, and
S. R. I.
Mulyani
, “
Analisis Churn Pada Jasa Broad Band
,”
Al irsyad
vol.
VI
,
2016
.
9.
F.
Castanedo
,
G.
Valverde
,
J.
Zaratiegui
, and
A.
Vazquez
, “
Using Deep Learning to Predict Customer Churn in a Mobile Telecommunication Network Federico
,” pp.
1
8
.
Wiseathena
.
2014
.
10.
Rapid Miner
, “
RapidMiner Studi o Manual
,”
2012, doi
: http://docs.rapidminer.com/downloads/RapidMiner-v6-user-manual.pdf.
11.
A.
Larasati
,
M.
Farhan
,
P.
Rahmawati
,
N.
Azzahra
,
A. M.
Hajji
, and
A. N.
Handayani
, “
Designing Classification Models of Patron Visits to an Academic Library using Decision Tree
,” vol.
17
.
Icoemis
,
2019
12.
R.
Latifah
,
E. S.
Wulandari
, and
P. E.
Kreshna
, “
Model Decision Tree Untuk Prediksi Jadwal Kerja Menggunakan Scikit-Learn
,”
J. Univ. Muhammadiyah Jakarta
, pp.
1
6
,
2019
.
13.
S.
Nowozin
, “
Improved information gain estimates for decision tree induction
,”
Proc. 29th Int. Conf. Mach. Learn. ICML 2012
, vol.
1
, pp.
297
304
,
2012
.
14.
L. E.
Raileanu
and
K.
Stoffel
, “
Theoretical comparison between the Gini Index and Information Gain criteria
,”
Ann. Math. Artif. Intell.
, vol.
41
, no.
1
, pp.
77
93
,
2004
, doi: .
15.
M. P.
Syamala
, “
Analisis Prediksi Churn Dan Segmentasi Pelanggan Speedy Retail Daerah Operasional Bandung Menggunakan Algoritma Decision Tree Dan K-Means
,” pp.
32
37
,
2013
.
16.
F.
Alfarisi
, “
pengaruh ekuitas merek terhadap pembelian ulang, harga premium, wom dan retensi pelanggan smartphone samsung seri s yang dimediasi kepuasan pelanggan di surabaya
,”
2019
, doi: .
17.
S.
Saraswat
and
A.
Tiwari
, “
A New Approach for Customer Churn Prediction in Telecom Industry
,”
Int. J. Comput. Appl.
, vol.
181
, no.
11
, pp.
40
46
,
2018
, doi: .
18.
H.
Abbasimehr
, “
A comparative Assessment of the performance ensemble Learning in customer churn prediction
.”
IAIJIT.
2013
This content is only available via PDF.
You do not currently have access to this content.