Bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are needed to improve the kinetics of cathode reaction in rechargeable Zn-air batteries. In this work, using poultry waste (i.e., chicken manures) as the raw material, biomass-derived carbon catalyst is obtained via activation treatment followed by a facile pyrolysis method. The chicken manures impregnated by KOH solution and pyrolyzed at high temperature produce a porous carbon structure with a large surface area of 730.57 m2 g−1 that is beneficial for its catalytic activity. The metal-free carbon-based catalyst exhibits a promising bifunctional catalytic activity in 0.1 M KOH, showing an ORR onset potential of 0.84 V vs. RHE and an OER overpotential of 420 mV at 1 mA cm−2. The rechargeable Zn-air battery with chicken manure-derived carbon catalyst exhibits a peak power density of 30.05 mW cm−2 and excellent cycle stability performance up to 120 discharge/charge cycles. The strategy of converting animal waste into the bifunctional oxygen electrocatalysts demonstrates the viability of biomass waste conversion into value-added material.

1.
F.
Santos
,
A.
Urbina
,
J.
Abad
,
R.
López
,
C.
Toledo
, and
A.J. Fernández
Romero
,
Chemosphere
250
,
126273
(
2020
).
2.
J.
Pan
,
Y.Y.
Xu
,
H.
Yang
,
Z.
Dong
,
H.
Liu
, and
B.Y.
Xia
,
Adv. Sci.
5
,
1700691
(
2018
).
3.
B.
Prakoso
,
M.A.A.
Mahbub
,
M.
Yilmaz
,
Khoiruddin
,
I.G.
Wenten
,
A.D.
Handoko
, and
A.
Sumboja
,
ChemNanoMat
7
,
354
367
(
2021
).
4.
H.-F.
Wang
,
C.
Tang
, and
Q.
Zhang
,
Adv. Funct. Mater.
28
,
1803329
(
2018
).
5.
J.
Wu
,
B.
Liu
,
X.
Fan
,
J.
Ding
,
X.
Han
,
Y.
Deng
,
W.
Hu
, and
C.
Zhong
,
Carbon Energy
2
,
370
386
(
2020
).
6.
J.
Wang
,
H.
Kong
,
J.
Zhang
,
Y.
Hao
,
Z.
Shao
, and
F.
Ciucci
,
Prog. Mater Sci.
116
,
100717
(
2021
).
7.
J.
Feng
,
R.
Tang
,
X.
Wang
, and
T.
Meng
,
ACS Appl. Energy Mater.
4
,
5230
5236
(
2021
).
8.
C.
Senthil
and
C.W.
Lee
,
Renewable Sustainable Energy Rev.
137
,
110464
(
2021
).
9.
M.A.A.
Mahbub
,
C.G.
Adios
,
M.
Xu
,
B.
Prakoso
,
J.M.
LeBeau
, and
A.
Sumboja
,
Chemistry – An Asian Journal
16
,
2559
2567
(
2021
).
10.
A.
Sumboja
,
B.
Prakoso
,
Y.
Ma
,
F.R.
Irwan
,
J.J.
Hutani
,
A.
Mulyadewi
,
M.A.A.
Mahbub
,
Y.
Zong
, and
Z.
Liu
,
Energy Mater. Adv.
2021
,
7386210
(
2021
).
11.
Y.
Liu
,
M.
Su
,
D.
Li
,
S.
Li
,
X.
Li
,
J.
Zhao
, and
F.
Liu
,
RSC Adv.
10
,
6763
6771
(
2020
).
12.
M.A.
Marsudi
,
Y.
Ma
,
B.
Prakoso
,
J.J.
Hutani
,
A.
Wibowo
,
Y.
Zong
,
Z.
Liu
, and
A.
Sumboja
,
Catalysts
10
,
64
(
2020
).
13.
S.
Zhang
,
K.
Tian
,
B.-H.
Cheng
, and
H.
Jiang
,
ACS Sustainable Chem. Eng.
5
,
6682
6691
(
2017
).
14.
L.
Wang
,
Z.
Sofer
, and
M.
Pumera
,
ACS Nano
14
,
21
25
(
2020
).
15.
H.
Song
,
H.
Li
,
H.
Wang
,
J.
Key
,
S.
Ji
,
X.
Mao
, and
R.
Wang
,
Electrochim. Acta
147
,
520
526
(
2014
).
16.
I.L.
Alonso-Lemus
,
M.Z.
Figueroa-Torres
,
D.
Lardizabal-Gutíerrez
,
P.
Bartolo-Pérez
,
J.C.
Carrillo-Rodríguez
, and
F.J.
Rodríguez-Varela
,
Sustainable Energy Fuels
3
,
1307
1316
(
2019
).
17.
C.
Steiner
,
K.
Harris
,
J.
Gaskin
, and
K.C.
Das
,
Open Agriculture
3
,
284
290
(
2018
).
18.
FAOSTAT
,
Food and Agriculture Organization of the United Nations (FAO)
(
2019
).
19.
M.S.
Hussein
, “
Experimental investigation of chicken manure pyrolysis and gasification
,” Ph.D. Thesis,
The University of Wisconsin-Milwaukee
,
2016
.
20.
Z.
Zhang
,
H.
Li
,
Y.
Yang
,
J.
Key
,
S.
Ji
,
Y.
Ma
,
H.
Wang
, and
R.
Wang
,
RSC Adv.
5
,
27112
27119
(
2015
).
21.
N.P.
Ponomarev
and
M.
Kallioinen
,
Nanotechnology
32
,
085605
(
2020
).
22.
Y.X.
Gan
, C
7
,
39
(
2021
).
23.
R.
Choudhary
,
S.
Patra
,
R.
Madhuri
, and
P.K.
Sharma
,
ACS Sustainable Chem. Eng.
5
,
9735
9748
(
2017
).
24.
Khan
,
A.
,
Installation and operation of autosorb-1-C-8 for bet surface area measurement of porous materials
.
2010
,
Pakistan Institute of Nuclear Science and Technology
.
25.
M.
Carmo
,
A.R. dos
Santos
,
J.G.R.
Poco
, and
M.
Linardi
,
J. Power Sources
173
,
860
866
(
2007
).
26.
J.Z.
Liang
and
Q.Q.
Yang
,
Adv. Polym. Technol.
37
,
2238
2245
(
2018
).
27.
J.
Wang
and
S.
Kaskel
,
J. Mater. Chem.
22
,
23710
23725
(
2012
).
28.
M.
Sevilla
,
N.
Díez
, and
A.B.
Fuertes
,
ChemSusChem
14
,
94
117
(
2021
).
29.
Y.
Gao
,
Q.
Yue
,
B.
Gao
, and
A.
Li
,
Sci. Total Environ.
746
,
141094
(
2020
).
30.
J.
Wang
,
C.-X.
Zhao
,
J.-N.
Liu
,
D.
Ren
,
B.-Q.
Li
,
J.-Q.
Huang
, and
Q.
Zhang
,
Nano Mater. Sci.
(
2021
).
31.
S.
Li
and
A.
Thomas
, “Chapter 12 - Emerged carbon nanomaterials from metal-organic precursors for electrochemical catalysis in energy conversion,” in
Advanced Nanomaterials for Electrochemical-Based Energy Conversion and Storage
, edited by
F.
Ran
and
S.
Chen
(
Elsevier
,
2020
), p.
393
423
.
32.
L.
Wang
and
F.-S.
Xiao
,
ChemCatChem
6
,
3048
3052
(
2014
).
33.
A.
Sumboja
,
J.
Chen
,
Y.
Ma
,
Y.
Xu
,
Y.
Zong
,
P.S.
Lee
, and
Z.
Liu
,
ChemCatChem
11
,
1205
1213
(
2019
).
34.
R.
Zhou
,
Y.
Zheng
,
M.
Jaroniec
, and
S.-Z.
Qiao
,
ACS Catal.
6
,
4720
4728
(
2016
).
This content is only available via PDF.
You do not currently have access to this content.