In this paper, we have studied Ricci soliton on projectively and concircularly Ricci Deszcz type pseudosymmetric Kenmotsu manifolds admitting semi-symmetric metric connection. Also Ricci soliton on a Kenmotsu manifold admitting a semi-symmetric metric connection satisfying P(ξ, Ya) · C=0 have been studied.

1.
Ajit
Barman
and
U. C.
De
,
Projective curvature tensor of a semi-symmetric metric connection in a Kenmotsu manifold
,
International Electronic Journal of Geometry
,
6
(
1
)
2013
,
159
169
.
2.
C.S.
Bagewadi
,
D.G.
Prakasha
and
Venkatesha
.,
Projective curvature tensor on a Kenmotsu manifoldwith respect to semi-symmetric metric connection
,
Seria, Mathematica
,
17
(
2007
),
21
32
.
3.
C.S.
Bagewadi
and
Gurupadavva
Ingalahalli
,
Ricci solitons in (ϵ, δ)-trans-Sasakian manifolds
,
International Journal of Analysis and Applications
ISSN 2291-8639,
14
,
2
(
2017
),
209
217
.
4.
K.K.
Baishya
and
P.R.
Chowdhury
,
On generalized quasi-conformal N(k, µ)-manifolds
,
Commun. Korean Math. Soc.
31
(
1
),
2016
,
163
176
.
5.
C. L.
Bejan
and
M.
Crasmareanu
,
Ricci Solitons in manifolds with quasi-constant curvature
,
Publ. Math. Debrecen
,
78
(
1
)(
2011
),
235
243
.
6.
T.Q.
Binh
,
On semi-symmetric connection
,
Periodica Math. Hungerica
,
21
(
2
)(
1990
),
101
107
.
7.
D.E.
Blair
Contact manifolds in Riemannian geometry,
Lecture Notes in Mathematics
,
509
Springer Verlag
,
Berlin
,
1976
.
8.
U.C.
De
,
On a type of semi-symmetric connection on a Riemannian manifold
,
Indian J. Pure Appl. Math.
,
21
(
4
)(
1990
),
334
338
.
9.
U.C.
De
and
Y.
Matsuyama
,
Ricci solitons and gradient Ricci solitons in a Kenmotsu manifolds
,
Southeast Asian Bull. Math.
,
37
(
5
)(
2013
),
691
697
.
10.
U. C.
De
and
A. A.
Shaikh
,
Differential Geometry of Manifolds
,
Narosa Publishing House Pvt. Ltd
.,
New Delhi
,
2007
.
11.
S.
Deshmukh
,
H.
Al-Sodais
and
H.
Alodan
,
A note on Ricci solitons
,
Balkan J. Geom. Appl.
,
16
(
2011
),
48
55
.
12.
R.
Deszcz
,
On Ricci-pseudosymmetric warped products
,
Demonstratio Math.
,
22
(
1989
),
1053
1065
.
13.
R.
Deszcz
,
On pseudosymmetric spaces, Bull. Soc. Math. Belg., Ser.A
,
44
(
1992
),
1
34
.
14.
T.
Dutta
,
N.
Basu
and
Bhattacharyya
A.
,
Conformal Ricci soliton in Lorentzian α-Sasakian manifolds
,
Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica
55
,
2
(
2016
)
57
70
.
15.
A.
Friedmann
and
J.A.
Schouten
,
Uber die Geometric der halbsymmetrischen Ubertragung
,
Math., Zeitschr
,
21
(
1924
),
211
223
.
16.
R.S.
Hamilton
,
Three-manifolds with positive Ricci curvature
,
J. Diff. Geom.
,
17
(
1982
),
255
306
.
17.
R.S.
Hamilton
,
The Ricci flow on surfaces, Mathematics and General Relativity
,
Contemp. Math., American Math. Soc.
,
71
(
1988
),
237
262
.
18.
H.A.
Hayden
,
Subspaces of a space with torsion
,
Proc. London Math. Soc.
,
34
(
1932
),
27
50
.
19.
S. K.
Hui
and
D.
Chakraborty
,
Para-Sasakian manifolds and Ricci solitons
,
Ilirias Journal of Mathematics
,
6
(
1
)(
2017
),
25
34
.
20.
D.G.
Prakasha
and
B.S.
Hadimani
, η-Ricci solitons on para-Sasakian manifolds,
Int. J. Geom
.,
Springer
,
108
(
2017
),
383
392
.
21.
D.G.
Prakasha
,
Aysel Turgut
Vanli
and
C.S.
Bagewadi
,
Some classes of Kenmotsu manifolds with respect to semi-symmetric metric connection
,
Acta Mathematica Sinica
,
29
(
7
)(
2013
),
1311
1322
.
22.
R.
Sharma
,
Certain results on k-contact and (k, µ)-contact manifolds
,
J. Geom.
,
89
(
2008
),
138
147
.
23.
S. Shyamal Kumar
Hui
,
Richard
Lemence
and
Debabrata
Chkraborty
,
Ricci solitons on Ricci pseudosymmetric (LCS)n-manifolds
, arXiv:1707.03618v1, math.DG, 12 Jul.
2017
.
24.
Venkatesha
,
K. T. Pradeep
Kumar
,
C. S.
Bagewadi
and
Gurupadavva
Ingalahalli
,
On concircular φ-recurrent K-contact manifold admitting semisymmetric metric connection
,
Hin. Publ. Corp. Intl. J. Math. Sci.
,
9
(
2012
).
25.
K.
Yano
,
On semi-symmetric metric connections
,
Rev. Roumaine Math. Pures Appl.
,
15
(
1970
),
1579
1586
.
26.
Yano
K.
,
Concircular geometry I., concircular transformations
,
Proc. Imp. Acad. Tokyo
,
16
(
1940
),
195
200
.
This content is only available via PDF.
You do not currently have access to this content.