In this paper, we have studied Ricci soliton on projectively and concircularly Ricci Deszcz type pseudosymmetric Kenmotsu manifolds admitting semi-symmetric metric connection. Also Ricci soliton on a Kenmotsu manifold admitting a semi-symmetric metric connection satisfying P(ξ, Ya) · C=0 have been studied.
Topics
Differentiable manifold
REFERENCES
1.
Ajit
Barman
and U. C.
De
, Projective curvature tensor of a semi-symmetric metric connection in a Kenmotsu manifold
, International Electronic Journal of Geometry
, 6
(1
)2013
, 159
–169
.2.
C.S.
Bagewadi
, D.G.
Prakasha
and Venkatesha
., Projective curvature tensor on a Kenmotsu manifoldwith respect to semi-symmetric metric connection
, Seria, Mathematica
, 17
(2007
), 21
–32
.3.
C.S.
Bagewadi
and Gurupadavva
Ingalahalli
, Ricci solitons in (ϵ, δ)-trans-Sasakian manifolds
, International Journal of Analysis and Applications
ISSN 2291-8639, 14
, 2
(2017
), 209
–217
.4.
K.K.
Baishya
and P.R.
Chowdhury
, On generalized quasi-conformal N(k, µ)-manifolds
, Commun. Korean Math. Soc.
31
(1
), 2016
, 163
–176
.5.
C. L.
Bejan
and M.
Crasmareanu
, Ricci Solitons in manifolds with quasi-constant curvature
, Publ. Math. Debrecen
, 78
(1
)(2011
), 235
–243
.6.
T.Q.
Binh
, On semi-symmetric connection
, Periodica Math. Hungerica
, 21
(2
)(1990
), 101
–107
.7.
D.E.
Blair
Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics
, 509
Springer Verlag
, Berlin
, 1976
.8.
U.C.
De
, On a type of semi-symmetric connection on a Riemannian manifold
, Indian J. Pure Appl. Math.
, 21
(4
)(1990
), 334
–338
.9.
U.C.
De
and Y.
Matsuyama
, Ricci solitons and gradient Ricci solitons in a Kenmotsu manifolds
, Southeast Asian Bull. Math.
, 37
(5
)(2013
), 691
–697
.10.
U. C.
De
and A. A.
Shaikh
, Differential Geometry of Manifolds
, Narosa Publishing House Pvt. Ltd
., New Delhi
, 2007
.11.
S.
Deshmukh
, H.
Al-Sodais
and H.
Alodan
, A note on Ricci solitons
, Balkan J. Geom. Appl.
, 16
(2011
), 48
–55
.12.
R.
Deszcz
, On Ricci-pseudosymmetric warped products
, Demonstratio Math.
, 22
(1989
), 1053
–1065
.13.
R.
Deszcz
, On pseudosymmetric spaces, Bull. Soc. Math. Belg., Ser.A
, 44
(1992
), 1
–34
.14.
T.
Dutta
, N.
Basu
and Bhattacharyya
A.
, Conformal Ricci soliton in Lorentzian α-Sasakian manifolds
, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica
55
, 2
(2016
) 57
–70
.15.
A.
Friedmann
and J.A.
Schouten
, Uber die Geometric der halbsymmetrischen Ubertragung
, Math., Zeitschr
, 21
(1924
), 211
–223
.16.
R.S.
Hamilton
, Three-manifolds with positive Ricci curvature
, J. Diff. Geom.
, 17
(1982
), 255
–306
.17.
R.S.
Hamilton
, The Ricci flow on surfaces, Mathematics and General Relativity
, Contemp. Math., American Math. Soc.
, 71
(1988
), 237
–262
.18.
H.A.
Hayden
, Subspaces of a space with torsion
, Proc. London Math. Soc.
, 34
(1932
), 27
–50
.19.
S. K.
Hui
and D.
Chakraborty
, Para-Sasakian manifolds and Ricci solitons
, Ilirias Journal of Mathematics
, 6
(1
)(2017
), 25
–34
.20.
D.G.
Prakasha
and B.S.
Hadimani
, η-Ricci solitons on para-Sasakian manifolds, Int. J. Geom
., Springer
, 108
(2017
), 383
–392
.21.
D.G.
Prakasha
, Aysel Turgut
Vanli
and C.S.
Bagewadi
, Some classes of Kenmotsu manifolds with respect to semi-symmetric metric connection
, Acta Mathematica Sinica
, 29
(7
)(2013
), 1311
–1322
.22.
R.
Sharma
, Certain results on k-contact and (k, µ)-contact manifolds
, J. Geom.
, 89
(2008
), 138
–147
.23.
S. Shyamal Kumar
Hui
, Richard
Lemence
and Debabrata
Chkraborty
, Ricci solitons on Ricci pseudosymmetric (LCS)n-manifolds
, arXiv:1707.03618v1, math.DG, 12 Jul. 2017
.24.
Venkatesha
, K. T. Pradeep
Kumar
, C. S.
Bagewadi
and Gurupadavva
Ingalahalli
, On concircular φ-recurrent K-contact manifold admitting semisymmetric metric connection
, Hin. Publ. Corp. Intl. J. Math. Sci.
, 9
(2012
).25.
K.
Yano
, On semi-symmetric metric connections
, Rev. Roumaine Math. Pures Appl.
, 15
(1970
), 1579
–1586
.26.
Yano
K.
, Concircular geometry I., concircular transformations
, Proc. Imp. Acad. Tokyo
, 16
(1940
), 195
–200
.
This content is only available via PDF.
©2023 Authors. Published by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.