In order to find the presence of the Best Proximity point, we use contractive maps in Branciari metric space. The results of this study will add to our mathematical quest in terms of intellectual pleasure and contribution to the discipline.

1.
M.A.
Alghandi
,
C.M.
chan
and
E.
Karapinar
,
A generalized weaker (a-ϕ-ψ) contractive mappings and related fixed point results in complete generalized metric spaces
,
Abstract and Applied Analysis
(
2014
) Article Id: 985080.
2.
A.
Amni-Harandi
,
A.
Petrusel
,
A fixed point theorem by altering distance technique in complete metric spaces
,
Miskolc Mathematics Notes
,
14
(
1
), (
2013
),
11
17
3.
M.
Arshad
,
J.
Ahmad
and
E.
Karapinar
,
some common fixed point results in Rectangular metric spaces
,
Internation Journal of Analysis
, Volume
2013
(
2013
), Article ID: 307234,
7
pages.
4.
M.
Arshad
,
J.
Ahmad
and
E.
Karapinar
,
Generalized contractions with triangular a-orbital admissible mapping on Branciari metric spaces
,
Journal of Inequalities and Applications
2016,
2016
:
63
(
2016
).
5.
M.
Asadi
,
E.
Karapinar
and
A.
kumar
, (a-ψ)-
Geraghty contractions on generalized metric spaces
.
Journal of Inequalities and Applications
,
2014
,
2014
:
423
.
6.
H.
Aydi
,
E.
Karapinar
,
D.
Zhang
,
A note on generalized admissible-Meir-contractions in the context of generalized metric spaces
.
Results in Mathematics
71
(
1
) (
2017
)
73
92
.
7.
Banach
,
Sur las operations dans les ensembles abstraits et laur applications aux equations integrals
,
fundam. Math
3
, (
1922
),
133
181
.
8.
M.
Berzig
,
E.
Karapinar
and
A.
Roldan
,
some fixed point theorems in Branciari Metric spaces
,
Mathematical slovaca
,
67
(
5
) (
2017
)
1
14
.
9.
N.
Bilgili
,
E.
karapinar
and
D.
Turkoglu
,
A note on common fixed points (ψ-a-β)-weakly contractive mappings in generalized metric spaces
,
Fixed point theory and Apllications
, (
2013
)
2013
:
287
.
10.
DW.
Boyd
,
JSW
Wong
,
onnonlinear contractions
,
Proc. Am. Math. Soc.
45
(
2
) (
1974
)
267
273
.
11.
A.
Branciari
,
A fixed point theorem of Banach-Caccippoli type on a class of Branciari metric spaces
,
Publ. Math.
57
(
2000
)
31
37
.
12.
A.
Branciari
,
A fixed point theorem for mappings satisfying a general contractive condition of integral type
,
Int.J. Math. Math. Sci.
,
29
(
9
) (
2002
)
531
536
.
13.
L.B.
Civic
,
A generalization of Banach’s contraction principle
,
proc. Am. Math. Soc.
,
45
(
1974
)
267
273
.
14.
C.M.
Chan
,
E.
Karapinar
and
J.J.
Lin
.,
Periodic points of weaker meir-Keeler contractive mappings on generalized quasi-metric spaces
,
Abstract and Applied Analysis
, (
2014
) Article No:490450.
15.
I.M.
Erhan
,
E.
Karapinar
and
T.
Sekulic
,
Fixed points of (ψ, ϕ)-contractions on reactangular metric spaces
,
Fixed point Theory Appl.
, (
2012
)
2012
:
138
.
16.
M.
Jleli
and
B.
Samet
,
A new generalization of the Banach contraction principle
,
Journal of Inequalities and Applications
(
2014
).
17.
M.
Jleli
and
B.
Samet
,
The Kannan’s fixed point theorems in a cone rectangular metric spaces
,
J. Nonlinear Sci. Appl.
2
(
3
) (
2009
)
161
167
.
18.
M.
Jleli
,
E.
Karapinar
and
B.
Samet
,
Further generalization of the Banach contraction principle
,
Journal of Inequalities and Application
,
2014
,
2014
:
439
.
19.
E.
Karapinar
,
Some fixed points results on Branciari metric spaces via implicit functions
,
Carpathian J. Math.
31
(
3
) (
2015
)
339
348
.
20.
E.
Karapinar
,
H.
Aydi
and
B.
Samet
,
Fixed points for generalized (a-ψ)-contractionson generalized metric spaces
,
Journal of Inequalities and Applications
(
2014
)
2014
:
229
.
21.
E.
Karapinar
and
A.
Pitea
,
On a-ψ-Geraghty contractive type mappings on quasi-Branciari metric spaces
,
Journal of Nonlinear and Convex Analysis.
17
(
7
) (
2016
)
1291
1301
.
22.
M.S.
Khan
,
M.
Swaleh
and
S.
Sessa
,
Fixed point theorems bu altering distances between the points
,
Bull. Aust. Math. Soc.
30
(
1984
)
1
9
.
23.
F.
Khojasteh
,
Antonio Francisco
Roldan
and
Lopez
De Hierro
,
The study of Manageble functions and approximate fixed point property with their application
,
common. Nonlinear Anal
,
1
(
2016
)
8
15
.
24.
H.
Monfared
,
M.
Asadi
and
M.
Azhini
,
F(ψ, ϕ)-contractions for a-admissible mappings on metric spaces and releated fixed point results
,
common. Nonlinear Anal
,
2
(
2016
)
86
94
.
25.
S.B.J.
Nadler
,
Multi-valued contraction mappings
,
Pac. J. Math.
,
30
(
1969
)
475
488
.
26.
E.
Maryam
,
S.
MansourVaezpour
and
M
Asadi
,
New fixed point results on Branciari Metric spaces
,
J. Mathematical Analysis
, Volume
8
Issue
6
(
2017
),
132
141
.
27.
V.S.
Raj
,
Eldred.
AA
,
Characterization of strictly convex space and applications
.
J. Option Theory Appl
(
2014
)
160
:
703
710
.
This content is only available via PDF.
You do not currently have access to this content.