The article demonstrates the possibility of using atomistic modeling, using the example of the molecular dynamics method, as an additional educational tool in the study of the properties of crystalline solids in laboratory work. The research was carried out with the participation of 5th year bachelor students studying in a double specialty "physics and computer science" in a pedagogical direction. A range of software is considered, which allows a flexible approach to the choice of topics for laboratory work, ensuring their implementation without significant time expenditures both on the part of the teacher and the students. A positive response from students was received, which was also expressed in a higher average score according to the results of mastering the discipline. The opinion of students is expressed that additional means of visualizing the results when carrying out molecular dynamics modeling are not required.

1.
U.
Harms
,
In Proceedings of the Second European Conference on Physics Teaching in Engineering Education
, (
Budapest, Romania
,
2000
). www.bme.hu/ptee2000/papers/harms1.pdf.
2.
T.
Lynch
,
I.
Ghergulescu
.
11th International Technology, Education and Development Conference (Valencia, Spain
,
2017
), pp.
6082
6091
.
3.
V.
Potkonjak
,
M.
Gardner
,
V.
Callaghan
,
P.
Mattila
,
Ch.
Guetl
,
V. M.
Petrovic
and
K.
Jovanovic
,
Computers & Education.
95
309
327
(
2016
).
4.
LAMMPS Molecular Dynamics Simulator Retrieved from
http://lammps.sandia.gov/.
5.
A.
Guajardo-Cuéllar
,
International Conference on Computation, Automation and Knowledge Management
(
ICCAKM)
.
2020
,
328
331
.
6.
P. V.
Zakharov
,
R. S.
Vdovin
,
A. V.
Markidonov
,
A.S.
Kochkin
and
A. S.
Vdovin
,
J. Phys.: Conf. Ser
.
1515
022001
(
2021
).
7.
Atomsk
:
A tool for manipulating and converting atomic data files Pierre Hirel
,
Comput. Phys. Comm
.
197
212
219
(
2015
).
8.
M.
Patriarca
,
A.
Kuronen
,
M.
Robles
and
K.
Kaski
,
Computer Physics Communications.
176
38
47
(
2007
).
9.
S. J.
Bennie
,
K. E.
Ranaghan
,
H.
Deeks
,
H. E.
Goldsmith
,
M. B.
O'Connor
,
A. J.
Mulholland
and
D. R.
Glowacki
,
Journal of Chemical Education.
96(
11)
2488
2496
(
2019
).
10.
L. C.
Williams
,
M. J.
Reddish
,
Journal of Chemical Education.
95(
6)
928
938
(
2018
).
11.
B. N.
Doblack
,
T.
Allis
and
L. P.
Dávila
,
J. Vis. Exp.
94
e51384
(
2014
).
12.
T.
Weinhart
,
L.
Orefice
,
M.
Post
,
M. P. van Schrojenstein
Lantman
,
I. F.C.
Denissen
,
D. R.
Tunuguntla
,
J.M.F.
Tsang
,
H.
Cheng
,
M. Y.
Shaheen
,
H.
Shi
,
P.
Rapino
,
E.
Grannonio
,
N.
Losacco
,
J.
Barbosa
,
L.
Jing
,
J. E. A.
Naranjo
,
S.
Roy
,
W. K.
den Otter
and
A. R.
Thornton
,
Computer Physics Communications
249
107129
(
2020
).
13.
W.-J.
Shyr
,
H.-M.
Liau
,
C.-C.
Hsu
and
C.-H.
Chen
,
Sustainability.
13
863210
(
2020
).
14.
E.
Elisa
,
A.
Farhan
,
F.
Herliana
,
A.
Wahyuni
and
S.
Susanna
,
J. Phys.: Conf. Ser.
1882
012030
(
2021
).
15.
K.
Kharki
,
K.
Berrada
and
D.
Burgos
.
Sustainability.
2021
,
13
,
371
, available at https://www.mdpi.com/2071-1050/13/7/3711.
16.
A.
Stukowski
,
Modelling Simul. Mater. Sci. Eng.
18
015012
(
2010
).
17.
P. V.
Zakharov
,
A. S.
Kataeva
,
S. A.
Safronova
,
A. V.
Markidonov
and
A. M
Eremin
,
J. Phys.: Conf. Ser
.
1889
022023
(
2021
).
18.
P. V.
Zakharov
,
A. S.
Kateva
,
A. S.
Kochkin
,
A. M.
Eremin
and
A. V.
Markidonov
,
J. Phys.: Conf. Ser
.
1691
012015
(
2020
).
This content is only available via PDF.
You do not currently have access to this content.