Food industry is one of the three largest waste water sources. Dairy industry is one of major food industry that generates approximately 0.2 - 10 L of wastewater per liter of processed milk. The dairy industry wastewater and its sludge are characterized by high biological oxygen demand (BOD), chemical oxygen demand (COD) and nutrients level. The most popular facilities for sewage sludge dewatering are filter presses and centrifuges and finally, sludge is used as fertilizer. In another hand, the large proportion of sludge at dairy industry waste water is a potential resource. Dairy sludge contains casein, lactose, fat, and valuable Nitrogen (N), Phosphor (P), Potasium (K), and organic matter. Industrial dairy sludge also predicted to be suitable for another microorganism media such as lactic acid bacteria. This research lays the foundation of the usage of dairy sludge as lactic acid fermentation resource to aim the best method for its COD reduction and pretreatment. The method of COD reduction is adsorption using four-layer media included coarse zeolite adsorbent, sand, fine zeolite, and activated charcoal arranged in 1: 1: 1: 1 ratio and coagulation using Poly Aluminum Chloride (PAC) 5% and Alum Sulfate 5% with 3 replications for each treatment. Then, hydrolyses was done using HCl 21%, H2SO4 1 M and H2SO4 1 M while steamed by autoclave. This research concluded that the best treatment to reduce COD levels in dairy waste is the adsorption method which can reduce COD for 10.8 x 106mg/L. The best hydrolysis method is using H2SO4 1 M that can yielded 17.43% reducing sugar.

1.
T.
Ahmad
,
R. M.
Aadil
,
H.
Ahmed
,
U. ur
Rahman
,
B. C. V.
Soares
,
S. L. Q.
Souza
,
T. C.
Pimentel
,
H.
Scudino
,
J. T.
Guimarães
,
E. A.
Esmerino
,
M. Q.
Freitas
,
R. B.
Almada
,
S. M. R.
Vendramel
,
M. C.
Silva
, and
A. G.
Cruz
,
Trends in Food Science and Technology
88
,
361
(
2019
).
2.
S. G.
Aji
,
Wastewater Treatment Field Practice Report at PT Indolakto Sukabumi Regency
(
West Java
,
2013
).
3.
G.
Jaganmai
and
R.
Jinka
,
Int J Curr Microbiol Appl Sci
5
,
67
(
2017
).
4.
E.
Daneshvar
,
M. J.
Zarrinmehr
,
E.
Koutra
,
M.
Kornaros
,
O.
Farhadian
, and
A.
Bhatnagar
,
Bioresource Technology
273
,
556
(
2019
).
5.
A. Kolev
Slavov
,
Food Technology and Biotechnology
55
,
14
(
2017
).
6.
C.-S. A.
De Jesus
,
V.-G. E.
Ruth
,
S.-F. R.
Daniel
, and
A.
Sharma
,
Advances in Bioscience and Biotechnology
6
,
223
(
2015
).
7.
W.
Dąbrowski
,
R.
Żyłka
, and
P.
Malinowski
,
Environmental Research
153
,
135
(
2017
).
8.
A. K.
Singh
,
G.
Singh
,
D.
Gautam
, and
M. K.
Bedi
,
BioMed Research International
2013
, (
2013
).
9.
K. A.
Buckle
,
R. A.
Edwards
,
G. H.
Fleet
, and
M.
Wootton
,
Adiono
.
UI. Press
.
Jakarta
(
1987
).
10.
W.
Groot
,
J.
Van Krieken
,
O.
Sliekersl
, and
S.
De Vos
,
Poly (Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications
1
(
2010
).
11.
S.
Lux
and
M.
Siebenhofer
,
Catalysis Science & Technology
3
,
1380
(
2013
).
12.
I.
Aoac
,
Official Methods of Analysis
12
, (
1990
).
13.
F. H.
Moede
,
S. T.
Gonggo
, and
R.
Ratman
,
Jurnal Akademika Kimia
6
,
86
(
2017
).
14.
AOAC 2010 AOAC Official Method
,
Chemical Oxygen Demand (COD) of Water
(
Titrimetric method
,
Washington DC
,
2010
).
15.
AOAC
,
Official Method Biochemical Oxygen Demand (BOD) of Water Incubation Method
(
Washington DC
,
1973
).
16.
and
H. B. A.
Dewi
N. K. A.,
Hartiati
A.
,
Journal of Agroindustrial Engineering and Management
6
,
307
(
2018
).
17.
N. M.
Rilek
,
N.
Hidayat
, and
Y.
Sugiarto
,
Industria: Jurnal Teknologi Dan Manajemen Agroindustri
6
,
76
(
2017
).
18.
A.
Nugroho
,
E.
Effendi
, and
T.
Novaria
,
Indonesian Journal of Urban and Environmental Technology
7
,
17
(
2016
).
19.
B.
Sarkar
,
P. P.
Chakrabarti
,
A.
Vijaykumar
, and
V.
Kale
,
Desalination
195
,
141
(
2006
).
20.
W. T.
Mook
,
M. H.
Chakrabarti
,
M. K.
Aroua
,
G. M. A.
Khan
,
B. S.
Ali
,
M. S.
Islam
, and
M. A. A.
Hassan
,
Desalination
285
,
1
(
2012
).
21.
E.
Indahyanti
,
B.
Kamulyan
, and
B.
Ismuyanto
,
Jurnal Penelitian Saintek
19
, (
2014
).
22.
K.
Chokshi
,
I.
Pancha
,
A.
Ghosh
, and
S.
Mishra
,
Bioresource Technology
221
,
455
(
2016
).
23.
Y.
Zhu
,
Z.
Wang
, and
L.
Zhang
,
LWT
111
,
211
(
2019
).
24.
G.
Cazaudehore
,
B.
Schraauwers
,
C.
Peyrelasse
,
C.
Lagnet
, and
F.
Monlau
,
Journal of Environmental Management
250
,
109464
(
2019
).
25.
W.
Atim
,
Journal of Biology Science & Education 2015 SURATI
4
,
99
(
2015
).
26.
C. M. W.
Harnadek
,
N. G. H.
Guilford
, and
E. A.
Edwards
,
STEM Fellowship Journal
1
,
2
(
2016
).
27.
D. H.
Andriani
F,
Darundiati
Y
,
Journal of Public Health (e-Journal)
5
,
659
(
2017
).
28.
M.
Said
,
G.
John
,
C.
Mhilu
, and
S.
Manyele
,
Journal of Renewable Energy
2015
, (
2015
).
29.
A.
Paul
,
M.
Malik
,
M.
Yadav
,
I.
Malhotra
, and
S.
Gupta
,
Journal Of Science And Technology
5
, (
2020
).
30.
P. J.
Rangari
and
P.
Chavan
,
International Journal of Innovative Research in Science, Engineering and Technology
6
,
220
(
2017
).
31.
I.
Prasertsung
,
K.
Aroonraj
,
K.
Kamwilaisak
,
N.
Saito
, and
S.
Damrongsakkul
,
Carbohydrate Polymers
205
,
472
(
2019
).
32.
T. C.
Sunarti
and
W.
Setiawan
,
Production of Starch Hydrolysate and Dietary Fiber from Cassava by Hydrolysis with α-Amylase and Hydrochloric Acid
(
Faculty of Agricultural Technology. Bogor Agricultural Institute
,
2006
).
This content is only available via PDF.
You do not currently have access to this content.