Due to the high cost of electricity, interruptions in the power supplied and frequent use of a fossil-powered generator in the College of Engineering, Afe Babalola University Ado-Ekiti (ABUAD), there is an increase in greenhouse gas emissions and this affects the immediate surroundings as well as the environment at large. There is a need to consider alternative means of economic, reliable and sustainable power supply. This can be achieved by modelling and simulating a solar PV system off the rooftops of the College of Engineering ABUAD. Google Earth Tool and Revit software were used to determine the total roof surface area and the useful roof surface area of the rooftops. HOMER Pro was used to model and simulate the solar PV system. The total roof surface area was 7389.161m2, 5210.34m2 was useful for the installation of 300W solar PV panels. The optimal configuration obtained from the solar PV simulation produced 821,080kWh/year which supplied 100% of the 697,150kWh demanded per year and 12% excess energy. It also reduced the cost of electricity by over 45% from N57.14 to N31.26. Utilization of the rooftop spaces was proven to provide access to a cost-saving, clean and sustainable energy supply.

1.
M. A.
Aderibigbe
,
S. T.
Wara
, and
A. E.
Airoboman
.
J. Eng. Appl. Sci.
, vol.
12
, no.
12
, pp.
3424
3246
,
2017
.
2.
O. O.
Ologun
and
S. T.
Wara
.
Int. J. Renew. Energy Res.
, vol.
4
, no.
1
, pp.
176
181
,
2014
, doi: .
3.
M. A.
Aderibigbe
,
S. T.
Wara
, and
A. E.
Airoboman
, “
Diesel engine generators consumption/emission controls by retrofitting for sustainable environment
,”
in Proceedings - 2017 IEEE PES-IAS PowerAfrica Conference: Harnessing Energy, Information and Communications Technology (ICT) for Affordable Electrification of Africa, PowerAfrica 2017
,
2017
, no.
June
, pp.
143
152
, doi: .
4.
S. S.
Folorunso
,
M. O.
Onibonoje
, and
S. T.
Wara
, “
A Mitigation Concept for Energy-Demand Based Carbon Footprint in a University Campus
,”
in 2020 IEEE PES/IAS PowerAfrica, 2020
, pp.
1
5
, doi: .
5.
S. O.
Bolawole
,
M. O.
Onibonoje
, and
S. T.
Wara
, “
An Energy Audit Approach towards Mitigating Power Infrastructural Dearth in Nigeria Universities: ABUAD as a Case Study
,”
in 2020 IEEE PES/IAS PowerAfrica
,
2020
, pp.
1
5
, doi: .
6.
T. M.
John
,
E.
Ucheaga
,
O. H.
Evwieroghene
, and
S. Wara
Tita
,
Financing Model for Rural Electrification from Renewable Energy Schemes
.
2017
.
7.
T. M.
John
and
S. Wara
Tita
, “
A Tutorial on the Development of a Smart Calculator to Determine the Installed Solar Requirements for Households and Small Businesses
,”
in 2018 IEEE PES/IAS PowerAfrica
, Jun.
2018
, pp.
319
323
, doi: .
8.
E. O.
Amuta
,
S. T.
Wara
,
A. F.
Agbetuyi
,
U. A.
Adoghe
, and
A.
Olajube
, “
Reliability Assessment of an Off-Grid Hybrid Micro-Grid Power System (HMPS) for a Remote Community in Nigeria
,”
IOP Conf. Ser. Earth Environ. Sci.
, vol.
655
, no.
1, 2021
, doi: .
9.
E.
Tarigan
.
Int. J. Renew. Energy Res.
, vol.
8
, no.
2
, pp.
896
908
,
2018
.
10.
O. J.
Ayamolowo
,
A. O.
Salau
, and
S. T.
Wara
.
2020
.
11.
M.
Simeon
,
A. U.
Adoghe
,
S. T.
Wara
, and
J. O.
Oloweni
, “
Renewable Energy Integration Enhancement Using Energy Storage Technologies
,”
2018 IEEE PES/IAS PowerAfrica, PowerAfrica 2018
, pp.
864
868
,
2018
, doi: .
12.
D.
Gielen
,
F.
Boshell
,
D.
Saygin
,
M. D.
Bazilian
,
N.
Wagner
, and
R.
Gorini
.
Energy Strateg. Rev.
, vol.
24
, pp.
38
50
, Apr.
2019
, doi: .
13.
N.
Nwulu
and
S. L.
Gbadamosi
, “
Power Systems and Renewable Energy Systems
,”
in Optimal Operation and Control of Power Systems Using an Algebraic Modelling Language
,
2021
, pp.
1
19
.
14.
Sustainable Development Goals
, “
Goal 7: Affordable and Clean Energy - Sustainable Development Goals
,”
2015
. https://sdgs.gov.ng/goals/energy/ (accessed Jun. 29, 2021).
15.
Sadiq
,
J. O.
Dada
, and
I.
Khalil
.
Renewable and Sustainable Energy Reviews.
, vol.
48
, pp.
336
-
346
, 2015.
16.
A. A.
Gassar
and
S. H.
Cha
.
Appl. Energy
, vol.
291
, no.
October
2020, p.
116817
,
2021
, doi: .
17.
Etukudor
,
H.
Orovwode
,
S. T.
Wara
,
F.
Agbetuyi
,
A.
Adozhe
,
B. O.
Obieje
,
andC. N.
Oparaocha
. “
Optimum Tilt and Azimuth Angles for Solar Photovoltaic Systems in South-West Nigeria
,”
in 2018 IEEE PES/IAS PowerAfrica
,
2018
, pp.
348
353
, doi: .
18.
Abdullahi
,
S.
Suresh
,
S.
Renukappa
, and
D.
Oloke
, “
Key Barriers to the Implementation of Solar Energy in Nigeria: A Critical Analysis
,”
IOP Conf. Ser. Earth Environ. Sci.
, vol.
83
, no.
1
,
2017
, doi: .
19.
A.
Hossain
,
N.
Chowdhury
, and
M. Longo.
Sustain
.,
2019
, doi: .
20.
Dondariya
,
D.
Porwal
,
A.
Awasthi
,
A. K.
Shukla
,
K.
Sudhakar
,
M. M.
Murali
, and
A.
Bhimte
.
Energy Reports
, vol.
4
, pp.
546
553
,
2018
, doi:
21.
T. R.
Ayodele
,
A. S. O.
Ogunjuyigbe
, and
K. C.
Nwakanma
.
Renew. Energy Focus
,
2021
, doi: .
22.
T.
Hong
,
M.
Lee
,
C.
Koo
,
J.
Kim
, and
K.
Jeong
.
Energy Procedia
, vol.
88
, pp.
408
413
,
2016
, doi: .
23.
A.
Murat
and
H.
Singh
.
J. King Saud Univ. - Sci.
, vol.
33
, no.
3
, p.
101361
,
2021
, doi: .
24.
National Renewable Energy Lab Database
,”
2016
. https://maps.nrel.gov/nsrdb-viewer/ (accessed Jul. 28, 2021).
25.
N.
Anang
,
S. N. A. S. Nur
Azman
,
W. M. W.
Muda
,
A. N.
Dagang
, and
M. Zalani
Daud
.
Energy Build.
, vol.
248
,
2021
, doi: .
This content is only available via PDF.
You do not currently have access to this content.