This paper presents a disturbance observer model predictive control (DO-MPC) for the UAV pitch angle control with the presence of disturbances. The linear disturbance observer is designed to estimate the unknown disturbances in a system. Then, the MPC optimization problem is formulated into quadratic programming (QP) by adding the disturbance estimations into the system prediction subject to the input constraints. Furthermore, the algorithm of DO-MPC scheme for UAV pitch angle control is presented. According to the simulations, the DO method can estimate the actual disturbances in terms of step and sinusoidal disturbances well. The simulation results show that with the same controller parameters, the DO-MPC has the better performance compared to MPC in handling the disturbances.

1.
J.
Guo
,
Q.
Peng
, and
J.
Zhou
, “
Disturbance observer–based nonlinear model predictive control for air-breathing hypersonic vehicles
,”
Journal of Aerospace Engineering
32
,
04018121
(
2019
).
2.
Y.
Li
,
M.
Zeng
,
H.
An
, and
C.
Wang
, “
Disturbance observer-based control for nonlinear systems subject to mismatched disturbances with application to hypersonic flight vehicles
,”
International Journal of Advanced Robotic Systems
14
,
1729881417699148
(
2017
).
3.
J.
Smith
,
J.
Su
,
C.
Liu
, and
W.-H.
Chen
, “
Disturbance observer based control with anti-windup applied to a small fixed wing uav for disturbance rejection
,”
Journal of Intelligent & Robotic Systems
88
,
329
346
(
2017
).
4.
B.
Zhang
,
X.
Sun
,
S.
Liu
, and
X.
Deng
, “
Adaptive model predictive control with extended state observer for multi-uav formation flight
,”
International Journal of Adaptive Control and Signal Processing
34
,
1341
1358
(
2020
).
5.
X.
Yang
and
Y.
Huang
, “Capabilities of extended state observer for estimating uncertainties,” in
2009 American control conference
(
IEEE
,
2009
) pp.
3700
3705
.
6.
H.
Purnawan
,
T.
Asfihani
,
D.
Adzkiya
, et al., “Disturbance compensating model predictive control for warship heading control in missile firing mission,” in
Journal of Physics: Conference Series
, Vol.
1108
(
IOP Publishing
,
2018
) p.
012035
.
7.
Z.
Li
and
J.
Sun
, “
Disturbance compensating model predictive control with application to ship heading control
,”
IEEE transactions on control systems technology
20
,
257
265
(
2011
).
8.
H.
Yang
,
F.
Deng
,
Y.
He
,
D.
Jiao
, and
Z.
Han
, “
Robust nonlinear model predictive control for reference tracking of dynamic positioning ships based on nonlinear disturbance observer
,”
Ocean Engineering
215
,
107885
(
2020
).
9.
B.
Xu
,
D.
Wang
,
Y.
Zhang
, and
Z.
Shi
, “
Dob-based neural control of flexible hypersonic flight vehicle considering wind effects
,”
IEEE Transactions on Industrial Electronics
64
,
8676
8685
(
2017
).
10.
W.-H.
Chen
,
J.
Yang
,
L.
Guo
, and
S.
Li
, “
Disturbance-observer-based control and related methods—an overview
,”
IEEE Transactions on industrial electronics
63
,
1083
1095
(
2015
).
11.
M.
Van
, “
An enhanced tracking control of marine surface vessels based on adaptive integral sliding mode control and disturbance observer
,”
ISA transactions
90
,
30
40
(
2019
).
12.
O.
Mofid
,
M.
Momeni
,
S.
Mobayen
, and
A.
Fekih
, “
A disturbance-observer-based sliding mode control for the robust synchronization of uncertain delayed chaotic systems: Application to data security
,”
IEEE Access
9
,
16546
16555
(
2021
).
13.
S.
Wu
,
L.
Chen
,
D.
Zhang
,
J.
Chen
, and
X.
Shao
, “
Disturbance observer based fixed time sliding mode control for spacecraft proximity operations with coupled dynamics
,”
Advances in Space Research
66
,
2179
2193
(
2020
).
14.
Y.
Lu
, “
Disturbance observer-based backstepping control for hypersonic flight vehicles without use of measured flight path angle
,”
Chinese Journal of Aeronautics
(
2020
).
15.
C.
Wu
,
J.
Yang
,
S.
Li
,
Q.
Li
, and
L.
Guo
, “
Disturbance observer based model predictive control for accurate atmospheric entry of spacecraft
,”
Advances in Space Research
61
,
2457
2471
(
2018
).
16.
Z.
Qiu
,
S.
Hu
, and
X.
Liang
, “
Disturbance observer based adaptive model predictive control for uncalibrated visual servoing in constrained environments
,”
ISA transactions
106
,
40
50
(
2020
).
17.
B.
Houska
,
H.
Ferreau
, and
M.
Diehl
, “
ACADO Toolkit – An Open Source Framework for Automatic Control and Dynamic Optimization
,”
Optimal Control Applications and Methods
32
,
298
312
(
2011
).
18.
B.
Houska
,
H.
Ferreau
, and
M.
Diehl
, “
An Auto-Generated Real-Time Iteration Algorithm for Nonlinear MPC in the Microsecond Range
,”
Automatica
47
,
2279
2285
(
2011
).
19.
B.
Houska
,
H.
Ferreau
,
M.
Vukov
, and
R.
Quirynen
, “
ACADO Toolkit User's Manual
,” http://www.acadotoolkit.org (2009–2013).
20.
W.
Adiprawita
,
A. S.
Ahmad
, and
J.
Semibiring
, “
Hardware in the loop simulator in uav rapid development life cycle
,” arXiv preprint arXiv:0804.3874 (
2008
).
21.
J. H.
Blakelock
,
Automatic control of aircraft and missiles
(
John Wiley & Sons
,
1991
).
22.
D.
McLean
, “Automatic flight control systems(book),”
Englewood Cliffs
,
NJ
,
Prentice Hall
,
1990
,
606
(
1990
).
23.
J.
Yang
,
W.-H.
Chen
, and
S.
Li
, “
Autopilot design of bank-to-turn missiles using state-space disturbance observers
,” (
2010
).
24.
S.
Li
,
J.
Yang
,
W.-H.
Chen
, and
X.
Chen
,
Disturbance observer-based control: methods and applications
(
CRC press
,
2014
).
25.
S.
Koo
,
S.
Kim
, and
J.
Suk
, “
Model predictive control for uav automatic landing on moving carrier deck with heave motion
,”
IFAC-PapersOnLine
48
,
59
64
(
2015
).
This content is only available via PDF.
You do not currently have access to this content.