In this paper we investigate the existence and uniqueness of common fixed point for two commutative self-mappings that satisfy contractive conditions in complete cone metric spaces. Next, by omitting the commutative property of the mappings, we investigate a uniqueness point of coincidence and common fixed point for two self-mappings in cone metric spaces. We use a new contractive conditions by referring to Radenović [10].

1.
H. L.
Guang
, and
Z.
Xian
,
Journal of Mathematical Analysis and Applications.
332
,
2
,
1468
1476
(
2007
).
2.
S.
Rezapour
, and
R.
Hamlbarani
, R,
Journal of Mathematical Analysis and Applications
,
345
,
2
,
719
724
(
2008
).
3.
M.
Abbas
, and
G.
Jungck
, G,
Journal Mathematical Analysis and Applications
,
341
,
416
420
(
2008
).
4.
G.
Jungck
,
S.
Radenovic
',
S.
Redojevi
, and
V.
Rakoevi
, V,
Hindawi Publishing Corporation Fixed Point Theory and Applications
,
2009
, Article ID 643840,
13
pages (2009).
5.
M.
Abbas
, and
B. E.
Rhoades
, B.E.
Applied Mathematics Letters
,
22
,
511
515
(
2009
).
6.
G.
Song
,
X.
Sun
,
Y.
Zhao
, and
G.
Wang
, (
2010
),
Applied Mathematics Letters
,
23
,
1033
1037
(2010).
7.
M.
Srivastava
, and
S. C.
Ghosh
,
International Journal of Mathematics Trends and Technology (IJMTT)
,
47
,
1
,
5
13
(
2017
).
8.
J.
Morales
, and
E. M.
Rojas
,
Article in International Journal of Mathematical Analysis
, arXiv:0907.3949v2,
10
pages (
2009
).
9.
T.
Hamaizia
,
New Trends in Mathematical Science
,
7
,
4
,
446
452
(
2019
).
10.
S.
Radenović
,
Computers and Mathematics with Applications
,
58
,
1273
1278
(
2009
).
11.
S.
Reich
,
Canad. Math. Bull
,
14
,
1
,
121
124
(
1971
).
12.
B. E.
Rhoades
,
Transactions of The American Mathematical Society
,
226
,
257
290
(
1977
).
13.
P.
Zabreiko
, (1997),
Collect. Math.
48
,
852
859
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.