In this paper, we give a notion of the generalized approximation mappings with respect to a normal subgroup of a group and some properties of this notion are derived. The notion is an extended notion of the approximation mappings.
REFERENCES
1.
Davvaz
, B.
, Roughness in rings, Information Sciences
, 164
(1-4
), pp.147
–163
, 2004
.2.
Pawlak
, Z.
, Rough Sets, International Journal of Information and Computer Sciences
, 11
, pp. 341
–356
, 1982
.3.
Zhang
, Q.
, Xie
, Q.
, and Wang
, G.
, A survey on rough set theory and its applications
, CAAI Transactions on Intelligence Technology
, 1
(4
), pp.323
–333
, 2016
.4.
Huang
, Y.
, Li
, T.
, Luo
, C.
, Fujita
, H.
, and Horng
, S. J.
, Dynamic variable precision rough set approach for probabilistic set-valued information systems
, Knowledge-based systems
, 122
, pp.131
–147
, 2017
.5.
Prasad
, M.
, Tripathi
, S.
, and Dahal
, K.
, An efficient feature selection-based Bayesian and Rough set approach for intrusion detection
, Applied Soft Computing
, 87
, p.105980
, 2020
.6.
Miao
, D.
, Han
, S.
, Li
, D.
, and Sun
, L.
, Rough group, rough subgroup and their properties, International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing Springer
, Berlin, Heidelberg
, August, pp. 104
–113
, 2005
.7.
Davvaz
, B.
, and Mahdavipour
, M.
, Roughness in modules, Information Sciences
, 176
(24
), pp.3658
–3674
, 2006
.8.
Wang
, C.
, Chen
, D.
, and Hu
, Q.
, On rough approximations of groups
, International Journal of Machine Learning and Cybernetics
, 4
(5
), pp.445
–449
, 2013
.9.
Inan
, E.
, and Öztürk
, M. A.
, Near semigroups on nearness approximation spaces
, Ann. Fuzzy Math. Inform
, 10
(2
), pp.287
–297
, 2015
.10.
Bağırnaz
, N.
, Near approximations in groups
, Applicable Algebra in Engineering, Communication and Computing
, 30
(4
), pp.285
–297
, 2019
.11.
Davvaz
, B.
, Setyawati
D.W.
, and Mukhlash
, I.
, Near approximations in rings
, Applicable Algebra in Engineering, Communication and Computing
, pp.1
–21
, 2020
.12.
Uckun
, M.
, and Genc
, A.
, Near-rings on nearness approximation spaces
, Turkish Journal of Mathematics
, 45
(1
), pp.549
–565
, 2021
.13.
Yamak
, S.
, Kazancı
, O.
, and Davvaz
, B.
, Generalized lower and upper approximations in a ring
, Information Sciences
, 180
(9
), pp.1759
–1768
, 2010
.14.
Hooshmandasl
, M. R.
, Karimi
, A.
, Almbardar
, M.
, and Davvaz
, B.
, Axiomatic systems for rough set-valued homomorphisms of associative rings
, International Journal of Approximate Reasoning
, 54
(2
), pp.297
–306
, 2013
.15.
Yamak
, S.
, Kazancı
, O.
, and Davvaz
, B.
, Approximations in a module by using set-valued homomorphisms
, International Journal of Computer Mathematics
, 88
(14
), pp.2901
–2914
, 2011
.16.
Davvaz
, B.
, A short note on algebraic T-rough sets
, Information Sciences
, 178
(16
), pp. 3247
–3252
, 2008
.
This content is only available via PDF.
© 2022 Author(s).
2022
Author(s)
You do not currently have access to this content.