In this paper, we give a notion of the generalized approximation mappings with respect to a normal subgroup of a group and some properties of this notion are derived. The notion is an extended notion of the approximation mappings.

1.
Davvaz
,
B.
,
Roughness in rings, Information Sciences
,
164
(
1-4
), pp.
147
163
,
2004
.
2.
Pawlak
,
Z.
,
Rough Sets, International Journal of Information and Computer Sciences
,
11
, pp.
341
356
,
1982
.
3.
Zhang
,
Q.
,
Xie
,
Q.
, and
Wang
,
G.
,
A survey on rough set theory and its applications
,
CAAI Transactions on Intelligence Technology
,
1
(
4
), pp.
323
333
,
2016
.
4.
Huang
,
Y.
,
Li
,
T.
,
Luo
,
C.
,
Fujita
,
H.
, and
Horng
,
S. J.
,
Dynamic variable precision rough set approach for probabilistic set-valued information systems
,
Knowledge-based systems
,
122
, pp.
131
147
,
2017
.
5.
Prasad
,
M.
,
Tripathi
,
S.
, and
Dahal
,
K.
,
An efficient feature selection-based Bayesian and Rough set approach for intrusion detection
,
Applied Soft Computing
,
87
, p.
105980
,
2020
.
6.
Miao
,
D.
,
Han
,
S.
,
Li
,
D.
, and
Sun
,
L.
, Rough group, rough subgroup and their properties, International Workshop on Rough Sets,
Fuzzy Sets, Data Mining, and Granular-Soft Computing Springer
,
Berlin, Heidelberg
, August, pp.
104
113
,
2005
.
7.
Davvaz
,
B.
, and
Mahdavipour
,
M.
,
Roughness in modules, Information Sciences
,
176
(
24
), pp.
3658
3674
,
2006
.
8.
Wang
,
C.
,
Chen
,
D.
, and
Hu
,
Q.
,
On rough approximations of groups
,
International Journal of Machine Learning and Cybernetics
,
4
(
5
), pp.
445
449
,
2013
.
9.
Inan
,
E.
, and
Öztürk
,
M. A.
,
Near semigroups on nearness approximation spaces
,
Ann. Fuzzy Math. Inform
,
10
(
2
), pp.
287
297
,
2015
.
10.
Bağırnaz
,
N.
,
Near approximations in groups
,
Applicable Algebra in Engineering, Communication and Computing
,
30
(
4
), pp.
285
297
,
2019
.
11.
Davvaz
,
B.
,
Setyawati
D.W.
, and
Mukhlash
,
I.
,
Near approximations in rings
,
Applicable Algebra in Engineering, Communication and Computing
, pp.
1
21
,
2020
.
12.
Uckun
,
M.
, and
Genc
,
A.
,
Near-rings on nearness approximation spaces
,
Turkish Journal of Mathematics
,
45
(
1
), pp.
549
565
,
2021
.
13.
Yamak
,
S.
,
Kazancı
,
O.
, and
Davvaz
,
B.
,
Generalized lower and upper approximations in a ring
,
Information Sciences
,
180
(
9
), pp.
1759
1768
,
2010
.
14.
Hooshmandasl
,
M. R.
,
Karimi
,
A.
,
Almbardar
,
M.
, and
Davvaz
,
B.
,
Axiomatic systems for rough set-valued homomorphisms of associative rings
,
International Journal of Approximate Reasoning
,
54
(
2
), pp.
297
306
,
2013
.
15.
Yamak
,
S.
,
Kazancı
,
O.
, and
Davvaz
,
B.
,
Approximations in a module by using set-valued homomorphisms
,
International Journal of Computer Mathematics
,
88
(
14
), pp.
2901
2914
,
2011
.
16.
Davvaz
,
B.
,
A short note on algebraic T-rough sets
,
Information Sciences
,
178
(
16
), pp.
3247
3252
,
2008
.
This content is only available via PDF.
You do not currently have access to this content.