We consider two simple graphs G and H, the notation F → (G, H) means that for any red- blue coloring of all the edges of graph F contains either a red copy isomorphic to G or a blue copy isomorphic to H. A graph F is Ramsey (G, H)-minimal graph if F → (G, H) and for any edge e in F then F - e → (G, H). The set of all Ramsey minimal graphs for pair (G, H) is denoted by R(G, H). The Ramsey set for pair (G, H) is said to be Ramsey-finite or Ramsey-infinite if R(G, H) is finite or infinite, respectively. Several articles have discussed the problem of determining whether R(G, H) is finite (infinite). It is known that the set R(Pm, Pn), for 3 ≤ mn is Ramsey-infinite. Some partial results in R(P4, Pn), for n = 4 and n = 5 , have been obtained. Motivated by this, we are interested in determining graphs in R(P4, P6). In this paper, we determine some graphs of certain order in R(P4, P6).

1.
J.
Nesetril
and
V.
Rodl
,
Partitions of vertices, Comment. Math. Univ. Carolinae
17
,
85
95
(
1976
).
2.
M.
Siggers
,
non-bipartite pairs of 3-connected graphs are highly Ramsey-infinite
,
European J. Combin.
36,
172
189
(
2014
).
3.
S.A.
Burr
,
P.
Erdos
,
R.J.
Faudree
,
C.C.
Rosseu
,
R.H.
Schelp
,
Ramsey-minimal graphs for forests
,
Studia Scient. Math. Hungar.
15
,
265
273
(
1982
).
4.
S.A.
Burr
,
P.
Erdos
,
L.
Lovasz
,
On graphs of Ramsey type, Ars Combinatoria
1
,
167
19O
(
1976
).
5.
L.
Yulianti
,
H.
Assiyatun
,
S.
Uttunggadewa
,
E.T.
Baskoro
,
On Ramsey (K1,2, P4)-minimal graphs
,
Far East Journal of Mathematical Sciences
40
,
23
-
36
(
2010
).
6.
D.
Rahmadani
,
E.T.
Baskoro
,
H.
Assiyatun
,
On Ramsey minimal graphs for the pair paths
,
Procedia Computer Science
74
,
15
20
(
2015
).
7.
D.
Rahmadani
,
E.T.
Baskoro
,
M.
Baca
,
H.
Assiyatun
and
A.S.
Fenovcikova
,
Some infinite families of Ramsey (P3, Pn)-minimal trees
,
Journal of Proceedings-Mathematical Sciences
127
(
5
),
779
786
(
2017
).
8.
D.
Rahmadani
,
Y.
Yoshie
,
B.
Rahadjeng
,
E.T.
Baskoro
,
H.
Assiyatun
,
On Ramsey (P4, P4)-minimal graphs
,
Thai Journal of Mathematics.
Submitted, (
2021
).
9.
D.
Rahmadani
and
T.
Nusantara
,
On Ramsey (P4, P4) -minimal graphs for small-order
,
AIP Conference Proceedings
2215
,
070014
(
2020
).
10.
D.
Conlon
,
J.
Fox
, and
B.
Sudakov
,
Recent developments in graph Ramsey theory
.,
Surveys in Combinatorics
424
,
49
118
(
2015
).
11.
J.
Fox
,
A.
Grinshpun
,
A.
Liebenau
,
Y.
Person
, and
T.
Szabo
,
what is Ramsey-equivalent to a clique?
J. Combin. Theory Ser. B
109
,
120
133
(
2014
).
12.
J.
Fox
,
A.
Grinshpun
,
A.
Liebenau
,
Y.
Person
, and
T.
Szabo
,
On the minimum degree of minimal Ramsey graphs for multiple colours
,
J. Combin. Theory Ser. B
120
,
64
82
(
2016
).
13.
A.
Grinshpun
,
R.
Raina
, and
R.
Sengupta
,
Minimum degrees of minimal Ramsey graphs for almost-cliques
,
J. Graph Theory
85
(
2
),
349
362
(
2017
).
14.
H.
Han
,
V.
Rodl
, and
T.
Szabo
,
Vertex Folkman numbers and the minimum degree of minimal Ramsey graphs
,
SIAM J. Discrete Math.
32
(
2
),
826
838
(
2018
).
15.
H.
Guo
and
L.
Warnke
,
Packing nearly optimal Ramsey r(3, t) graphs
,
Combinatorica
,
1
41
(
2020
).
16.
R.
Diestel
,
Graph Theory,2nd ed.
(
Springer-Verlag New York Inc
,
New York
,
2000
).
17.
D.
Rahmadani
,
S.
Wahyuningsih
, and
D.E.
Cahyani
,
Some Families of Ramsey (P4, PS)-minimal graphs
,
AIP Conference Proceedings.
Submitted, (
2021
).
This content is only available via PDF.
You do not currently have access to this content.