Graph labeling is a way of assigning integers to vertices or edges of a graph that satisfy certain conditions. One of graph labeling is odd harmonious labeling. Let G = G(p, q) be a graph that have p vertices and q edges. An odd harmonious labeling of G is an injective function f from the set of vertices of G to the set { 0, 1, 2, …, 2q - 1} such that the induced function f*, where f*: E(G) → {1, 3, 5, … , 2q - 1}, and f* (uv) = f(u) + f(v) for every edge uvE(G), is bijective. A snake graph k(G) is a graph obtained from a path on k edges by replacing each edge by a graph isomorphic to G. If such labeling exists, then G is said to be odd harmonious. In this paper we show that snake graph k(G) is odd harmonious for some graph G.

1.
R.
Diestel
,
Graph Theory
(Electronic Edition), Third, (
Spinger-Verlag Heidelberg
,
New York
,
2005
).
2.
J. A.
Gallian
, “
A dynamic survey of graph labeling
,” in
Electron Journal of Combinatorics
1(Dynamic Surveys)
, (
2020
).
3.
Z. H.
Liang
and
Z. L.
Bai
, “
On the odd harmonious graphs with applications
,” in
Journal of Applied Mathematics and Computing
29
(
1
),
105
116
(
2009
).
4.
M. E.
Abdel-Aal
, “
Odd Harmonious Labeling of Cyclic Snakes
,” in
International journal on applications of graph theory in wireless ad hoc networks and sensor networks (GRAPH-HOC)
5
(
3
),
1
11
(
2013
).
5.
M. E.
Abdel-Aal
, “
New Families of Odd Harmonious Graphs
,” in
International Journal of Soft Computing Mathematics and Control
3
(
1
),
1
13
(
2014
).
6.
F.
Firmansah
,
Pelabelan harmonis ganjil pada gabungan graf ular dan graf ular berlipat
, March (
2016
).
7.
F.
Firmansah
F, “
The Odd Harmonious Labeling on Variation of the Double Quadrilateral Windmill Graphs
,” in
Jurnal ILMU DASAR
18
(
2
),
109
118
(
2017
).
8.
F.
Firmansah
, “
Pelabelan Harmonis Ganjil pada Graf Ular Jaring Berlipat
,” in
Sainmatika: Jurnal Ilmu Matematika dan Ilmu Pengetahuan Alam
17
(
1
),
1
8
(
2020
).
9.
P.
Jeyanthi
and
S.
Philo
, “
Odd harmonious labeling of plus graphs
,” in
Bulletin of the International Mathematics virtual Institute
7
(
3
),
515
526
(
2017
).
10.
P.
Jeyanthi
and
S.
Philo
, “
Odd Harmonious Labeling of Some New Graphs
,” in
Southeast Asian Bulletin of Mathematics
,
509
523
(
2019
).
11.
P.
Jeyanthi
and
S.
Philo
, “
Odd harmonious labeling of some cycle related graphs
,” in
Proyecciones
35
,
85
89
(
2016
).
12.
P.
Jeyanthi
and
S.
Philo
, “
Odd Harmonious Labeling Of Certain Graphs
,” in
JASC: Journal of Applied Science and Computations VI(IV)
,
1224
1232
(
2019
).
13.
P.
Jeyanthi
and
S.
Philo
, “
Some Results on Odd Harmonious Labeling of Graphs
,” in
Journals / Bull.
9
,
567
576
(
2019
).
14.
P.
Jeyanthi
and
S.
Philo
, “
Odd Harmonious Labeling of Subdivided Shell Graphs
,” in
Int. J. Comput. Sci. Eng.
7
(
2019
),
5
p.
76
80
.
15.
P.
Jeyanthi
and
S.
Philo
, “
Odd harmonious labeling of some classes of graphs
,” in
Cubo
22
(
2020
), 3 p.
299
314
.
16.
P.
Jeyanthi
,
S.
Philo
and
K. A.
Sugeng
, “
Odd harmonious labeling of some new families of graphs
,” in
SUT J. Math.
(
2015
)
51
p.
181
193
.
17.
P.
Jeyanthi
,
S.
Philo
and
M.
Youssef
, “
Odd harmonious labeling of grid graph
,” in
Proyecciones
38
(
3
),
411
428
(
2019
).
18.
Saputri G A
Sugeng
K A and
Froncek
D
,
The Odd Harmonious Labeling of Dumbbell and Generalized Prism Graphs
,
AKCE Int. J. Graphs Comb.
,
10
, No.
2
(
2013
), 2 p.
221
228
.
This content is only available via PDF.
You do not currently have access to this content.