This study aims to determine the validity, practicality, and effectiveness of the newly developed computational chemistry-based laboratory work module. The developed laboratory work module is applied to test lawsone’s efficacy and its derivatives as a sensitizer in dye-sensitized solar cells DSSC. The Design and Development D&D research model is used at every stage of development. The research population was 90 prospective teachers of chemistry education, Faculty of Teacher Training and Education, University of Mataram, Indonesia. All population has passed computational chemistry and photochemistry courses in the 2020/2021 academic year. The research sample was 40 prospective teachers, with a comparison of computational chemistry and photochemistry class samples was 3:1, where the sample was taken randomly. Test the validity of the laboratory work module conducted by three expert validators. The Aiken index shows 0.88, and the developed laboratory work module is in the high validity category. The practicality test was carried out by distributing response questionnaires to prospective teachers. The practicality test score is 82%, which indicates that the practicality of the module is categorized as very practical. Furthermore, the module effectiveness test is carried out by asking respondents to answer the questions provided in the module. The average score obtained by prospective teachers is 71.6% which indicates that the application of the module can improve the understanding of the concept of prospective teachers. In conclusion, the laboratory work module based on computational chemistry is valid, practical, and effective. Modules can be used as reinforcement in learning in computational chemistry and photochemistry courses.

1.
A.
Makoye
,
A.
Pogrebnoi
, and
T.
Pogrebnaya
,
J. Mol. Graph. Model
94
,
107457
(
2020
).
2.
A. R.
Hevner
,
S.T.
March
,
J.
Park
, and
S.
Ram
,
MIS Q.: Manag. Inf. Syst
28
,
75
105
(
2004
).
3.
B. J.
Esselman
and
N. J.
Hill
, “Integrating computational chemistry into an organic chemistry laboratory curriculum using WebMO,” in
Using Computational Methods to Teach Chemical Principles
, (
American Chemical Society
2019
),
1312
, pp
139
162
.
4.
C.
Anwar
,
A.
Saregar
,
N.
Zellia
,
R.
Diani
, and
I. S.
Wekke
,
Eurasia J. Math. Sci. Technol. Educ
15
,
1
9
(
2019
)
5.
N.
Reid
,
I.
Shah
,
Chem. Educ. Res. Pract
8
,
2
,
172
-
185
, (
2007
).
6.
E. C.
Heider
,
D.
Valenti
,
R. L.
Long
,
A.
Garbou
,
M.
Rex
, and
J. K.
Harper
,
J. Chem. Edu
95
,
535
542
(
2018
).
7.
E.
Dhivyadeepa
,
Sampling Techniques in Educational Research
(Lulu.com.
2015
)
8.
E.
Junaidi
,
S.
Hadisaputra
, and
S. W.
Al Idrus
,
J. Ilm. Prof. Pendidik
2
,
101
111
(
2017
).
9.
E.
Junaidi
,
S.
Hadisaputra
, and
S. W.
Al Idrus
,
Jurnal Pijar MIPA
13
,
24
31
(
2018
).
10.
E. W.
Kelley
,
J. Chem. Edu
97
,
2606
2616
(
2020
).
11.
G. C.
Hoover
,
A. P.
Dicks
, and
D. S.
Seferos
,
J. Chem. Edu
98
,
805
811
(
2021
).
12.
G. W.
Wei
,
T. A.
Soares
,
H.
Wahab
, and
R.
Wang
,
J. Chem. Inf. Model
61
,
2
,
547
, (
2021
).
13.
Irwanto
,
E.
Rohaeti
,
E.
Widjajanti
, and
Suyanta
, “Students’ science process skill and analytical thinking ability in chemistry learning”, in
Proceedings of 4ᵗʰ International Conference on Research, Implementation and Education of Mathematics and Science, AIP Conference Proceedings 1686, edited by C. Kusumawardani et al
., (
AIP Publishing Melville NY
,
2017
) pp.
030001
.
14.
J.
Moon
, The module and programme development handbook: A practical guide to linking levels, outcomes and assessment criteria (
Routledge
,
2003
).
15.
J. W.
Ochterski
,
J. Chem. Edu
91
,
817
822
(
2014
).
16.
L.
Tribe
,
Computational Chemistry as a Course for Students Majoring in the Sciences
.
In Using Computational Methods to Teach Chemical Principles, American Chemical Society
1312
,
183
194
(
2019
).
17.
M. K.
Seery
,
J. Chem. Edu
97
,
1511
1514
(
2020
).
18.
M.
Yustiqvar
,
G.
Gunawan
,
S.
Hadisaputra
, and
A. T.
Bon
, “
Interactive Multimedia Product Based on Green Chemistry in the Acid-Base Concept of Chemistry Learning Process
”, In
Proceedings of the International Conference on Industrial Engineering and Management
, edited by
M.
Rahman
, (
IEOM Society
,
Michigan
,
2019
), pp.
2082
2086
.
19.
R. C.
Richey
and
J. D.
Klein
, Design and development research: Methods, strategies, and issues (
Routledge
,
2014
).
20.
R. C.
Richey
and
J. D.
Klein
, “Design and development research," In Handbook of research on educational communications and technology, (
Springer
,
New York, NY
,
2014
) pp.
141
150
.
21.
N. T. R. N.
Kumara
,
A.
Lim
,
C. M.
Lim
,
M.I.
Petra
,
P.
Ekanayake
,
Renew. Sustain. Energy Rev
78
,
301
317
, (
2017
).
22.
S.
Hadisaputra
,
L. R. T.
Savalas
,
S.
Hamdiani
,
Jurnal Pijar MIPA
12
,
11
14
(
2017
).
23.
S.
Sreeja
and
B.
Pesala
,
ACS omega
4
,
18023
18034
(
2019
).
24.
S.
Sreeja
and
B.
Pesala
,
Scientific reports
10
,
1
17
(
2020
).
25.
R. C.
Richey
,
J. D.
Klein
, Design and development research: Methods, strategies, and issues. (
Routledge
,
2014
).
26.
T. A.
Palazzo
,
T. T.
Truong
,
S. M.
Wong
,
E. T.
Mack
,
M. W.
Lodewyk
,
J. G.
Harrison
,
D. J.
Tantillo
,
J. Chem. Edu
92
,
561
566
(
2015
).
27.
W. S.
Dewi
,
M.
Harris
,
J.
Siahaan
,
Acta Chimica Asiana
1
,
57
63
(
2018
)
28.
Z.
Shana
and
E. S.
Abulibdeh
,
JOTSE
10
,
199
215
(
2020
).
This content is only available via PDF.
You do not currently have access to this content.