An absorber plate from Solar Water Heating System (SWHS) is the primary tool to absorb solar energy. Thermal energy storage receives special attention in solar energy applications, including high energy storage performance and energy conversion efficiency. A combination of absorber plate of the SWHS with thermal energy storage (TES) material aims to evaluate its performance. TES composite (TESC) is a Metal Matrix Composite (MMC) made of alumina (Al2O3) and pure aluminium (Al) composite material with a thickness of 15 mm. It is placed under the absorber plate to store heat energy before being transferred to the water and reduce top heat losses. Experimental tests were carried out by testing two models of absorber plates on a solar thermal energy unit with similar conditions. The first model is a standard flat-plate (SFP) absorber without TES composite. The second model combines standard flat-plate absorber and TES composite (SFP-TESC) placed under the SFP absorber. Each model was tested in the solar thermal energy unit for 2 (two) hours with the first 1 hour, the heat source is ON, and the next 1 hour is OFF. The results show that the average efficiency of the SFP model with various flow rates is 74.90% (8 L/h), 73.02% (10 L/h) and 69.23% (12 L/h). Meanwhile, the average efficiency of the SFP-TESC model with various flow rates is 67.10% (8 L/h), 68.43% (10 L/h), and 67.60% (12 L/h). Increasing the energy stored transferred to the circulating water can help to improve the efficiency of the SFP-TESC model.

1.
Y.
Tian
and
C. Y.
Zhao
, “
A review of solar collectors and thermal energy storage in solar thermal applications
,”
Applied Energy
,
104
, pp.
538
553
, (2013).
2.
L. F.
Cabeza
,
I.
Martorell
,
L.
Miró
,
A. I.
Fernández
, and
C.
Barreneche
, “
Introduction to thermal energy storage (TES) systems
,”
Advances in Thermal Energy Storage Systems
, pp.
1
28
. (
2015
).
3.
D.
Laing
and
S.
Zunft
, “
Using concrete and other solid storage media in thermal energy storage (TES) systems
,”
Advances in Thermal Energy Storage Systems
, pp.
65
86
. (
2015
).
4.
A. I.
Fernández
,
M.
Martínez
,
M.
Segarra
, and
L. F.
Cabeza
, “
Selection Of Materials With Potential In Thermal Energy Storage
,” p.
8
.
5.
A.
Gil
et al, “
State of the art on high-temperature thermal energy storage for power generation. Part 1— Concepts, materials and modellization
,”
Renewable and Sustainable Energy Reviews
,
14
(
1
), pp.
31
55
. (
2010
).
6.
K.
Almadhoni
and
S.
Khan
, “
Evaluation of the Effective Thermal Properties of Aluminum Metal Matrix Composites Reinforced by Ceramic Particles
,” p.
14
.
7.
P.
Gudlur
,
A.
Forness
,
J.
Lentz
,
M.
Radovic
, and
A.
Muliana
, “
Thermal and mechanical properties of Al/Al2O3 composites at elevated temperatures
,”
Materials Science and Engineering: A
,
531
, pp.
18
27
. (
2012
).
8.
M.
Valizade
,
M. M.
Heyhat
, and
M.
Maerefat
, “
Experimental study of the thermal behavior of direct absorption parabolic trough collector by applying copper metal foam as volumetric solar absorption
,”
Renewable Energy
,
145
, pp.
261
269
. (
2020
).
9.
Y.
Yang
,
Q.
Wang
,
D.
Xiu
,
Z.
Zhao
, and
Q.
Sun
, “
A building integrated solar collector: All-ceramic solar collector
,”
Energy and Buildings
,
62
, pp.
15
17
. (
2013
).
10.
F.
Zaversky
et al, “
Numerical and experimental evaluation and optimization of ceramic foam as solar absorber – Single-layer vs multi-layer configurations
,”
Applied Energy
,
210
, pp.
351
375
. (
2018
).
11.
S.
Saedodin
,
S. A. H.
Zamzamian
,
M. E.
Nimvari
,
S.
Wongwises
, and
H. J.
Jouybari
, “
Performance evaluation of a flat-plate solar collector filled with porous metal foam: Experimental and numerical analysis
,”
Energy Conversion and Management
,
153
, pp.
278
287
. (
2017
).
12.
K.
Anirudh
and
S.
Dhinakaran
, “
Performance improvement of a flat-plate solar collector by inserting intermittent porous blocks
,”
Renewable Energy
,
145
, pp.
428
441
. (
2020
).
13.
Z.
Chen
,
M.
Gu
, and
D.
Peng
, “
Heat transfer performance analysis of a solar flat-plate collector with an integrated metal foam porous structure filled with paraffin
,”
Applied Thermal Engineering
,
30
(
14–15
), pp.
1967
1973
. (
2010
).
14.
W.
Baig
and
H. M.
Ali
, “
An experimental investigation of performance of a double pass solar air heater with foam aluminum thermal storage medium
,”
Case Studies in Thermal Engineering
,
14
, p.
100440
. (
2019
).
15.
J.
Xu
,
Y.
Yang
,
B.
Cai
,
Q.
Wang
, and
D.
Xiu
, “
All-ceramic solar collector and all-ceramic solar roof
,”
Journal of the Energy Institute
,
87
(
1
), pp.
43
47
. (
2014
).
16.
M.
Zukowski
and
G.
Woroniak
, “
Experimental testing of ceramic solar collectors
,”
Solar Energy
,
146
, pp.
532
542
. (
2017
).
17.
Jalaluddin
and
A.
Miyara
, “
Thermal Performances of Vertical Ground Heat Exchangers in Different Conditions
,”
Journal of Engineering Sciences and Technology
,
11
(
12
), pp.
1771
1783
. (
2016
).
18.
Jalaluddin
,
R.
Tarakka
, and
A.
Miyara
, “
Performance of Shallow Borehole of spiral-Tube Ground Heat Exchanger
,”
Journal of Mechanical Engineering
,
15
(
2
), pp.
41
52
. (
2018
).
19.
Jalaluddin
,
A.
Miyara
,
S.
Ishikawa
,
R.
Tarakka
, and
A. Amijoyo
Mochtar
, “
Development of an open-loop ground source cooling system for space air conditioning system in hot climate like Indonesia
,”
MATEC Web Conf.
,
204
, p.
04007
. (
2018
).
20.
Jalaluddin
,
E.
Arif
, and
R.
Tarakka
, “
Experimental Study of an SWH System with V-Shaped Plate
,”
J. Eng. Technol. Sci.
,
48
(
2
), p.
11
. (
2016
).
21.
Jalaluddin
,
R.
Tarakka
,
M.
Rusman
, and
A. A.
Mochtar
, “
Performance Investigation of Solar Water Heating System with V-Shaped Absorber Plate Integrated PCM Storage
,”
International Journal on Engineering Applications (IREA)
,
8
(
5
). (
2020
).
22.
Y.
Taheri
,
K.
Alimardani
, and
B. M.
Ziapour
, “
Study of thermal effects and optical properties of an innovative absorber in integrated collector storage solar water heater
,”
Heat Mass Transfer
,
51
(
10
), pp.
1403
1411
. (
2015
).
23.
J.
Aleksiejuk
,
A.
Chochowski
, and
V.
Reshetiuk
, “
Analog model of dynamics of a flat-plate solar collector
,”
Solar Energy
,
160
, pp.
103
116
. (
2018
).
24.
A.
Harmim
,
M.
Boukar
,
M.
Amar
, and
A.
Haida
, “
Simulation and experimentation of an integrated collector storage solar water heater designed for integration into building facade
,”
Energy
,
166
, pp.
59
71
. (
2019
).
25.
K.
Velmurugan
,
W.
Christraj
,
N.
Kulasekharan
, and
T.
Elango
, “
Performance Study of a Dual-Function Thermosyphon Solar Heating System
,”
Arab J Sci Eng
,
41
(
5
), pp.
1835
1846
. (
2016
).
26.
Jalaluddin
,
E.
Arif
,
A.
Halim
, and
R.
Tarakka
, “
The Performance of Solar Water Heater System using Integrated Collector and PCM Energy Storage
,”
Prosiding SNTTM XVI
, pp.
6
10
. (
2017
).
27.
J.
Pukdum
,
T.
Phengpom
, and
K.
Sudasna
, “
Thermal Performance of Mixed Asphalt Solar Water Heater
,”
International Journal of Renewable Energy Research
,
9
(
2
). (
2019
).
This content is only available via PDF.
You do not currently have access to this content.