Goats were one of the oldest domesticated ruminants and are thought to have been domesticated in the mountains of West Asia between 7000 and 10,000 BC. The earliest evidence for its domestication was the discovery of relics in a supposedly >7,000 B.C. on the coast of the Yerko and Caspian Seas, Jordan. Goats are also remarkable in that they are bred all over the world in the exception of quite cold regions such as the Arctic. About 75% of the world’s population uses goat for milk, meat, wool, and/or leather. Existing wild goats are roughly classified into three subspecies: Bezoar (Capra aegagrus), distributed in West Asia; Markhor (C. falconeri), inhabiting Afghanistan and Pakistan; and Ibex (C. ibex), scattered in West Asia, Central Asia, East Africa, and Europe. Among these, Bezoar is the most widely agreed wild goat, and in addition, genetic effects of Markhor in the Central Asian region and genetic effects of Ibex in the course of transmission to the African region are suggested. The world’s domestic goats are broadly classified into three categories as Bezoar type, Savanna type, and Nubian type. Recently, DNA polymorphism analyses for goats have been performed, especially using the D-loop region of mitochondrial DNA (mtDNA). As a result, it has been clarified as six haplogroups (types A-G). The divergence times among these haplogroups were estimated to be at least >50,000 years, suggesting that they diverged before domestication. However, analyses of multiple strains of wild goats Bezoar, Markhor, and Ibex are genetically distinct from the haplotypes of these domestic goats, and from this analysis, it is not clear from which wild goats they are inherited from their ancestors or genetic influences. The mitochondrial haplogroup A predominates in most of the world, and is almost exclusively found in Europe and Africa, especially in the Middle East and the West. On the other hand, the mitochondrial haplogroup B is found in more eastern countries, particularly in Southeast Asia at high frequency, and its frequency tends to increase in the southeast. The fact that this type B is restricted to East Asia and is more frequent in Southeast Asian countries may provide interesting insights into the domestication and propagation routes of goats. In addition, SRY 3 UTR sequences on Y chromosome revealed four major SRY haplotypes (Y1A, Y1B, Y2A, and Y2B) with a marked geographic differentiation and several regional variants. The haplotypes Y1A and Y2A are found worldwide at high frequencies, whereas the haplotypes Y1B and Y2B are found specifically in Europe and Southeast Asia, respectively. Moreover, whole-genome sequences showed that the Y1A haplotype was split into Y1AA and Y1AB. Subsequently, we examined genome-wide analysis of modern Eurasian goats using goat 52K SNP array for estimating the genetic structure and the establishing process of Southeast Asian goats. The results of the analyses in Asian goat populations were well matched with topology of geographical locations, suggesting two major propagation routes from domestication center to Southeast Asia via Southwest Asia and Northeast Asia via Central Asia. The genome-wide SNP information in addition of uniparental markers could supply a comprehensive scenario of Southeast Asian goat history. In this ICAST4 conference, I would like to talk about our results based on molecular evidence and discuss the origin(s) and propagation route(s) in the East and Southeast Asian goats.

1.
F. E.
Zeuner
,
A History of Domesticated Animals
(
Hutchinson
,
London
,
1963
).
2.
I. L.
Mason
,
Evolution of Domesticated Animal
(
Longman
,
London
,
1984
).
3.
S.
Bökönyi
,
History of Domestic Mammals in Central and Eastern Europe
(
Akademiai Kiado
,
Budapest
,
1974
).
4.
G. B.
Cobet
,
The Mammals of The Palaearctic Region: A Taxonomic Review
(
British Museum
,
London Natinal History Press
,
1978
).
5.
D. R.
Harris
, “The distribution and ancestry of the domestic goat,” in
Proceedings of the Linnean Society of New South Wales
. (
Linnean Society of New South Wales
,
Sydney
,
1962
), p
79
.
6.
W.
Herre
and
M.
Röhrs
,
Haustiere: Zoologisch Gesehen
(
Gustav Fischer
,
Stuttgart
,
1973
).
7.
W.
Herre
,
Handbuch der Tierzüchtung
, vol.
1
(
Paul Parey, Hamburg und Berlin
,
1958
).
8.
N. A.
Ganai
and
B. R.
Yadav
,
“Genetic variation within and among three Indian breeds of goat using heterologous microsatellite markers,” Anim
.
Biotechnol.
12
,
121
136
(
2001
)
9.
M. H.
Li
,
S. H
.
Zhao
,
C
.
Bian
,
H. S
.
Wang
,
H. L
.
Wei
,
B
.
Liu
,
M
.
Yu
,
B
.
Fan
,
S. L
.
Chen
,
M. J
.
Zhu
,
S. J
.
Li
,
T. A
.
Xiong
and
K
.
Li
Genetic relationships among twelve Chinese indigenous goat populations based on microsatellite analysis
,”
Genet. Sel. Evol.
34
,
729
744
(
2002
).
10.
G.
Luikart
,
L.
Gielley
,
L.
Excoffier
,
J. D.
Vigne
,
J.
Bouvet
and
P.
Taberlet
, “
Multiple maternal origins and weak phylogeographic structure in domestic goats
,”
Proceedings of the National Academy of Sciences of the United States of America.
(
Washington D C
,
2001
), pp
5927
5932
.
11.
H.
Mannen
,
Y.
Nagata
and
S.
Tsuji
, “
Mitochondrial DNA reveal that domestic goat (Capra hircus) are genetically affected by two subspecies of bezoar (Capra aegagurus
),”
Biochem. Genet.
39
,
145
154
(
2001
).
12.
S.
Sultana
,
H.
Mannen
and
S.
Tsuji
, “
Mitochondrial DNA diversity of Pakistani goats
,”
Anim. Genet.
34
,
417
421
(
2003
).
13.
S.
Sultana
and
H.
Mannen
, “
Polymorphism and evolutionary profile of mitochondrial DNA control region inferred from the sequences of Pakistani goats
,”
J. Anim. Sci.
75
,
303
309
(
2004
).
14.
T.
Takada
,
Y.
Kikkawa
,
H.
Yonekawa
,
S.
Kawakami
and
T.
Amano
, “
Bezoar (Capra aegagrus) is a matriarchal candidate for ancestor of domestic goat (Capra hircus): Evidence from the mitochondrial DNA diversity
,”
Biochem. Genet..
35
,
315
326
(
1997
).
15.
V.
Manceau
,
L.
Despres
,
J.
Bouvet
and
P.
Taberlet
, “
Systematics of the genus Capra inferred from mitochondrial DNA sequence data
,”
Mol. Phylogenet. Evol.
13
,
504
510
(
1999
).
16.
H.
Mannen
,
K.
Iso
,
F.
Kawaguchi
,
S.
Sasazaki
,
T.
Yonezawa
,
M. I. A.
Dagong
and
S. R. A.
Bugiwati
. “
Indonesian native goats (Capra hircus) reveal highest genetic frequency of mitochondrial DNA haplogroup B in the world
,”
J. Anim. Sci.
91
,
1
4
(
2020
).
17.
M. B.
Joshi
,
P. K.
Rout
,
A. K.
Mandal
,
C.
Tyler-Smith
,
L.
Singh
and T. K, “
Phylogeography and origin of Indian domestic goats
,”
Mol. Biol. Evol.
21
,
454
462
(
2004
).
18.
B. Z.
Lin
,
S.
Odahara
,
M.
Ishida
,
T.
Kato
,
S.
Sasazaki
,
K.
Nozawa
and
H.
Mannen
, “
Molecular phylogeography and genetic diversity of East Asian goats
,”
Anim. Genet.
44
,
79
85
(
2013
).
19.
B. Z.
Lin
,
T.
Kato
,
M.
Kaneda
,
H.
Matsumoto
,
S.
Sasazaki
and
H.
Mannen
, “
Genetic diversity and structure in Asian native goat analyzed by newly developed SNP markers
,”
Anim. Sci. J.
84
,
579
584
(
2013
).
20.
M. E.
Hurles
and
M. A.
Jobling
, “
Haploid chromosomes in molecular ecology: Lessons from the human
,”
Molecular Ecology.
10
,
1599
1613
(
2001
).
21.
J.
Peters
,
D.
Helmer
,
A.
von den Driesch
and
M.
Sana-Segui
, “
Early animal husbandry in the Northern Levant
,”
Paleorient.
25
,
27
47
(
1999
).
22.
F.
Pereira
,
J.
Carneiro
,
P.
Soares
,
S.
Maciel
,
F.
Nejmeddine
,
J. A.
Lenstra
,
L.
Gusmao
and
A.
Amorim
, “
A multiplex primer extension assay for the rapid identification of paternal lineages in domestic goat (Capra hircis): Laying the foundations for a detailed caprine Y chromosome phylogeny
,”
Molecular phylogenetics and Evolution
49
,
663
668
(
2008
).
23.
F.
Pereira
,
S.
Querios
,
L.
Gismao
,
I. J.
Nijma
,
E.
Cuppen
,
J. A.
Lenstra
,
Econogene
Consortium
,
S. J.
Davis
,
F.
Nejmeddine
and
A.
Amorim
, “
Tracing the history of goat pastoralism: new clues from mitochondorial and Y chromosome DNA in North Africa
,”
Molecular Biology and Evolution
26
,
2765
2773
(
2009
).
24.
J.
Canon
,
D.
Garcia
,
M. A.
Garcia-Atance
,
G.
Obexer-Ruff
,
J. A.
Lenstra
,
P.
Ajmone-Marsan
,
S.
Dunner
and
Econogene
Consortium
, “
Geographical partitioning of goat diversity in Europe and the Middle East
,”
Animal Genetics
37
,
327
334
(
2006
).
25.
J. A.
Lenstra
, “
Evolutionary and demographic history of sheep and goats suggested by nuclear, mtDNA and Y-chromosome markers
,” in
International Workshop on the role of biotechnology for the characterisation and conservation of crop, forestry, animal and fishery genetic resources
(Plemonte,
2005
), pp
97
100
.
26.
I. J.
Nijman
,
B. D.
Rosen
,
Z.
Zheng
,
Y.
Jiang
,
T.
Cumer
,
K. G.
Daly
,
V. A.
Bâlteanu
,
B.
Berger
,
T.
Blichfelgt
,
G.
Boink
,
S.
Carolan
,
V.
Cubric-Curik
,
J.
Kantanen
,
A.
Martínez
,
R.
Mazza
,
N.
Khayatzadeh
,
N.
Kim
,
N-A.
Ouchene-Khelifi
,
F.
Pereira
,
A.
Da Silva
,
M.
Simčič
,
J.
Sölkner
,
A.
Sutherland
,
J.
Tigchelaar
,
Econogene
Consortium
,
P.
Ajmone-Marsan
,
D. G.
Bradley
,
L.
Colli
,
F.
Pompanon
and
A.
Lenstra
, “
Phylogeny and distribution of Y-chromosomal haplotypes in domestic, ancient and wild goats
,”
Bioxriv
(
2020
).
27.
A.
Waki
,
S.
Sasazaki
,
E.
Kobayashi
and
H.
Mannen
, “
Paternal phylogeography and genetic diversity of East Asian goats
,”
Anim. Genet.
46
,
337
339
(
2015
).
28.
R.
Tabata
,
F.
Kawaguchi
,
S.
Sasazaki
,
Y.
Yamamoto
,
F.
Rakotondraparany
,
F. M
Ratsoavina
,
T.
Yonezawa
and
H.
Mannen
, “
Phylogeographic analysis of Madagascan goats using mtDNA control region and SRY gene sequences
,”
Zoolog. Sci.
36
,
294
298
(
2019
).
29.
R.
Tabata
,
F.
Kawaguchi
,
S.
Sasazaki
,
Y.
Yamamoto
,
M.
Bakhtin
,
P.
Kazymbet
,
A.
Meldevekob
,
M. Z.
Suleimenov
,
M.
Nishibori
and
H.
Mannen
The Eurasian Steppe is an important goat propagation route: a phylogeographic analysis using mitochondrial DNA and Y-chromosome s,
J. Anim. Sci.
90
,
317
322
(
2019
).
30.
H.
Mannen
,
S.
Tsuji
,
R. T.
Loftus
and
D. G.
Bradley
, “
Mitochondrial DNA variation and evolution of Japanese Black Cattle
,”
Genetics
150
,
1169
1175
(
1998
).
This content is only available via PDF.
Published by AIP Publishing.
You do not currently have access to this content.