The Research has been carried out on the use of tofu liquid waste as raw material for the manufacture of nanocellulose produced with the help of Acetobacter Xylinum bacteria. The research media was carried out by adjusting the degree of acidity to pH 4 and mixing tofu liquid waste and coconut water with a volume ratio of 1: 0; 1:1; and 3:1. The results of the study showed that at a ratio of 1: 0 no nanocellulose was formed, this was due to the absence of sufficient nutrient content in the media. Meanwhile, at a ratio of 1:1 and 3:1, nanocellulose was formed with a mass of 1.8 g and 0.9 g, respectively. The formed nanocellulose was washed with distilled water and soaked for 24 hours with 2.5% NaOH. The results were then washed again with distilled water to a neutral pH and dried using a dryer oven at a temperature of 30°C. The drying results were further characterized by FTIR, XRD, and SEM. The results of the characterization of the two samples showed the formation of nanocellulose with sizes ranging from 20 nm to 60 nm. The FT-IR results show specific groups of cellulose at wave numbers 3200-3700 cm−1 for the OH group and 2900-2950 cm−1 for the CH group and 998-1050 cm−1 -C-O-C- group. nanocellulose is formed which is shown from the typical peaks of cellulose there are 14° and 22°.

1.
J. Y.
Chua
and
S. Q.
Liu
,
Trends Food Sci. Technol.
91
,
24
32
(
2019
).
2.
W.
Widayat
,
J.
Plilia
, and
J.
Wibisono
, “
Liquid Waste Processing of Tofu Industry for Biomass Production as Raw Material Biodiesel Production
,”
IOP Conf. Ser. Earth Environ. Sci.
,
48
,
1
(
2019
), pp.
0
5
.
3.
S. P.
Karnanta
,
M.
Solikin
, and
H.
Purnama
,
J. Phys. Conf. Ser.
1858
,
1
(
2021
).
4.
Y.
Song
et al
J. Environ. Chem. Eng
,
9
,
5
(
2021
).
5.
S. N.
Jannah
,
S.
Pujiyanto
,
E.
Rosiana
, and
S.
Purwantisari
,
J. Phys. Conf. Ser.
1943
,
1
(
2021
).
6.
A. P.
Asiandu
,
H.
Widjajanti
, and
R.
Rosalina
, “
The Potential of Tofu Liquid Waste and Rice Washing Wastewater as Cheap Growth Media for,"
9
,
4
(
2021
) pp.
769
775
.
7.
H. P. S. Abdul
Khalil
,
A. H.
Bhat
, and
A. F. Ireana
Yusr
,
Carbohydr. Polym.
,
87
,
2
(
2012
) pp.
963
979
.
8.
S.
Naz
,
J. S.
Ali
, and
M.
Zia
,
Bio-Design Manuf.
,
2
,
3
(
2019
) pp.
187
212
.
9.
N. F.
Vasconcelos
et al,
Carbohydr. Polym.
155
, (
2017
) pp.
425
431
.
10.
F. G.
Torres
,
J. J.
Arroyo
, and
O. P.
Troncoso
,
Mater. Sci. Eng. C.
98
, (
2019
) pp.
1277
1293
.
11.
Z.
Chengbo
et al,
Sci. China Technol. Sci.
62
,
6
(
2019
) pp.
971
981
.
12.
V.
Kumar
,
D. K.
Sharma
,
V.
Bansal
,
D.
Mehta
,
R. S.
Sangwan
, and
S. K.
Yadav
,
Bioresour. Technol.
275
, (
2019
) pp.
430
433
.
13.
C.
Castro
et al
Carbohydr. Polym.
,
89
,
4
(
2012
) pp.
1033
1037
14.
O. J.
Rojas
,
"Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials"
,
271
(
2016
).
15.
H.
Zhang
,
C.
Chen
,
C.
Zhu
, and
D.
Sun
,
Cellul. Chem. Technol.
,
50
,
9–10
(
2016
) pp.
997
1003
.
16.
S.
Gea
et al,
Bioresour. Technol.
,
102
,
19
(
2011
) pp.
9105
9110
.
17.
J.
Zhang
et al,
LWT - Food Sci. Technol.
,
81
, (
2017
) pp.
87
93
.
18.
J. A.
Marins
,
B. G.
Soares
,
K.
Dahmouche
,
S. J. L.
Ribeiro
,
H.
Barud
, and
D.
Bonemer
,
Cellulose.
18
,
5
(
2011
), pp.
1285
1294
.
19.
C.
Chuah
,
J.
Wang
,
J.
Tavakoli
, and
Y.
Tang
,
Polymers (Basel)
.
10
,
12
(
2018
).
20.
M.
Abba
,
B. B.
Nyakuma
,
Z.
Ibrahim
,
J. B.
Ali
,
S. I. A.
Razak
, and
R.
Salihu
,
J. Nat. Fibers.
21.
A. F. S.
Costa
,
F. C. G.
Almeida
,
G. M.
Vinhas
, and
L. A.
Sarubbo
,
Front. Microbiol.
8
, (
2017
) pp.
1
12
,
2017
.
22.
J. C.
Meza-Contreras
,
R.
Manriquez-Gonzalez
,
J. A.
Gutiérrez-Ortega
, and
Y.
Gonzalez-Garcia
,
Carbohydr. Res.
461
, (
2018
) pp.
51
59
.
23.
R. F.
Dórame-Miranda
,
N.
Gámez-Meza
,
L.
Medina-Juárez
,
J. M.
Ezquerra-Brauer
,
M.
Ovando-Martínez
, and
J.
Lizardi-Mendoza
,
Carbohydr. Polym.
207
, (
2019
) pp.
91
99
.
This content is only available via PDF.
You do not currently have access to this content.