ZnO/α-Fe2O3 nanocomposite have been synthesized by a ball milling technique and applied for indigo carmine dye degradation in aqueous solutions. ZnO and α-Fe2O3 with the mole ratio of 1 : 5 were mixed without solvent in a planetary mill at the milling speed of 350 rpm for 2 h. X-ray Diffraction (XRD) and Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDS) were used to characterize individual and nanocomposite samples. Based on XRD results it is known that the average crystallite size of α-Fe2O3, ZnO, and ZnO/α-Fe2O3 nanocomposite determined by using Scherer’s formula are 52.40 nm, 39.47 nm, and 47.07 nm. SEM images show that α-Fe2O3 particles are highly homogeneous in shape and size, while the image of ZnO/α-Fe2O3 nanocomposite confirmed the presence of ZnO in α-Fe2O3 surface. Compare to α-Fe2O3 and ZnO, ZnO/α-Fe2O3 nanocomposite showed higher photocatalytic activitiy for degradation of indigo carmine under UV irradiation. Some parameter conditions such as the pH of indigo carmine solution, ZnO/α-Fe2O3 nanocomposite dosage, and indigo carmine concentration also studied in detail. The highest degradation percentage of indigo carmine was obtained by using 250 mg of ZnO/α-Fe2O3 nanocomposite, the initial pH of indigo carmine solution is 1, and indigo carmine concentration is 15 mg/L at the irradiation time under UV light for 120 minutes and 90 minutes under solar light.

1.
J.R.
Huang
,
H.B.
Ren
,
X.S.
Liu
,
X.X.
Li
and
J.-J.
Shim
,
Superlattices Microstruct.
81
,
16
25
(
2015
).
2.
L.
Karimi
,
S.
Zohoori
and
M.E.
Yazdanshenas
,
J. Saudi Chem. Soc.
18
,
581
588
(
2014
).
3.
N.M.
Flores
,
U.
Pal
and
E.S.
Mora
,
Appl. Catal. A.
394
,
269
275
(
2011
).
4.
D.
Zhao
,
C.C.
Chen
,
Y.F.
Wang
,
W.
Ma
,
J.
Zhao
,
T.
Rajh
and
L.
Zang
,
Environ. Sci. Technol.
42
,
308
314
(
2008
).
5.
S.
Ameen
,
M.S.
Akhtar
,
M.
Nazim
and
H.
Shin
,
Mater. Lett.
39
,
228
232
(
2013
).
6.
M.
Zhu
,
Y.
Wang
,
D.
Meng
,
X.
Qin
and
G.
Diao
,
J. Phys. Chem. C.
116
,
16276
16285
(
2012
).
7.
D.S.
Bohle
and
C.J.
Spina
,
J. Am. Chem. Soc.
131
,
4397
4404
(
2009
).
8.
S.
Han
,
L.
Hu
,
Z.
Liang
,
S.
Wageh
,
A.A.
Al-Ghamdi
,
Y.
Chen
and
X.
Fang
,
Adv. Funct. Mater.
24
,
5719
5727
(
2014
).
9.
F.
Achouri
,
S.
Corbel
,
A.
Aboulaich
,
L.
Balan
,
A.
Ghrabi
,
M. B.
Said
and
R.
Schneider
,
J. Phys. Chem. Solids.
75
,
1081
1087
(
2014
).
10.
M.
Li
,
S.K.
Cushing
,
N.Q.
Wu
,
Analyst
140
,
386
406
(
2014
).
11.
X.
Bu
,
F.
Liu
,
Z.
Zhang
,
Z.
Wang
,
J.
Liu
and
W.
Liu
,
Mater. Lett,
129
,
33
36
(
2018
).
12.
F. S.
Hashim
,
A. F.
Alkaim
,
S. M.
Mahdi
,
A. H. O.
Alkhayatt
,
Compos. Commun.
16
,
111
116
(
2019
).
13.
A.
Noruozi
and
A.
Nezamzadeh-Ejhieh
,
Chem. Phys. Lett.
752
,
137587
(
2020
).
14.
S.
Bhowmik
,
V.
Chakraborty
and
P.
Das
,
Results Surf. Interfaces,
3
,
100011
(
2021
).
15.
S.
Lubis
,
Sheilatina
and
Murisna
,
J. Phys.: Conf. Ser
1116
,
042016
(
2018
).
16.
A. H.
Zyouda
,
A.
Zubia
,
S.
Hejjawia
,
S.H.
Zyoud
,
M. H.
Helal
,
S. H.
Zyoud
,
N.
Qamhieh
,
A.
Hajamohideen
and
H. S.
Hilal
,
J. Environ. Chem. Eng.
8
,
104038
(
2020
).
17.
F.
Herrera
,
A.
Lopez
,
G.
Mascolo
,
P.
Albers
and
J.
Kiwi
,
Appl. Catal. B.
29
,
147
162
(
2001
).
18.
S.
Netpradit
,
P.
Thiravetyan
and
S.
Towprayoon
,
J. Colloid Interface Sci.
270
(
2
)
255
261
(
2004
).
19.
N.
Daneshvar
,
D.
Salari
and
A.R.
Khataee
,
J. Photochem. Photobiol. A.
157
(
1
),
111
116
(
2003
).
20.
A.
Houas
,
H.
Lachheb
,
M.
Ksibi
,
E.
Elaloui
,
C.
Guillard
and
J. M.
Herrmann
,
Appl. Catal. B.
31
,
145
157
(
2001
).
21.
A.
Khataee
,
M.
Sheydaei
,
A.
Hassani
,
M.
Taseidifar
and
S.
Karaca
,
Ultrason. Sonochem.
22
,
404
411
(
2015
).
This content is only available via PDF.
You do not currently have access to this content.