Transition metal sulfide (TMS) has gained much interest due to its excellent electrochemical properties and application in many devices. Herein, the composite of Iron Pyrite and PVP (FeS2−PVP) via hot-injection method (HIM) was synthesized directly on a nickel foam substrate. By the Hot-injection method, we obtained FeS2 nanoparticles with a short reaction time and simple method. This study also evaluates the effect of concentration, reaction time, and the precursor ratio on the pyrite structure and absorption properties. The X-Ray Diffraction (XRD) measurement confirmed that the Fe:S ratio of 1:4 shows the best crystallinity of FeS2. This study observed the effect of PVP concentration on electrochemical performance. The electrochemical properties of FeS2−PVP characterized using Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltammetry (CV) with 3M KOH as the electrolyte. By the electrochemical characterization, FeS2−PVP better electrochemical performance compared to pristine FeS2. These results suggest that FeS2−PVP is promising for the future development of high-performance electrical energy storage.

1.
Douglas
A.
,
Carter
R.
,
Oakes
L.
,
Share
K.
,
Cohn
A. P.
and
Pint
C. L.
2015
Ultrafine Iron Pyrite (FeS2) Nanocrystals Improve Sodium-Sulfur and Lithium-Sulfur Conversion Reactions for Efficient Batteries
ACS Nano
9
11156
65
2.
Pei
L.
,
Yang
Y.
,
Chu
H.
,
Shen
J.
and
Ye
M.
2016
Self-assembled flower-like FeS2/graphene aerogel composite with enhanced electrochemical properties
Ceram. Int.
42
5053
61
3.
Durga
I. K.
,
Rao
S. S.
,
Kalla
R. M. N.
,
Ahn
J. W.
and
Kim
H. J.
2020
Facile synthesis of FeS2/PVP composite as high-performance electrodes for supercapacitors
J. Energy Storage
28
101216
4.
Theerthagiri
J.
,
Senthil
R. A.
,
Nithyadharseni
P.
,
Lee
S. J.
,
Durai
G.
,
Kuppusami
P.
,
Madhavan
J.
and
Choi
M. Y.
2020
Recent progress and emerging challenges of transition metal sulfides based composite electrodes for electrochemical supercapacitive energy storage
Ceram. Int.
46
14317
45
5.
Bai
Y.
,
Yeom
J.
,
Yang
M.
,
Cha
S.-H.
,
Sun
K.
and
Kotov
N. A.
2013
Universal synthesis of single-phase pyrite FeS2 nanoparticles, nanowires, and nanosheets
J. Phys. Chem. C
117
2567
73
6.
Rui
X.
,
Tan
H.
and
Yan
Q.
2014
Nanostructured metal sulfides for energy storage
Nanoscale
6
9889
924
7.
Abdelhamid
M. E.
and
Snook
G. A.
2018
Conducting Polymers and Their Application in Supercapacitor Devices
Encyclopedia of Polymer Science and Technology
(
Hoboken, NJ, USA
:
John Wiley & Sons, Inc
.) pp
1
20
8.
Patterson
A. L.
1939
The scherrer formula for X-ray particle size determination
Phys. Rev.
56
978
82
9.
Balasingam
S. K.
,
Thirumurugan
A.
,
Lee
J. S.
and
Jun
Y.
2016
Amorphous MoS: X thin-film-coated carbon fiber paper as a 3D electrode for long cycle life symmetric supercapacitors
Nanoscale
8
11787
91
10.
Feng
J.
,
Sun
X.
,
Wu
C.
,
Peng
L.
,
Lin
C.
,
Hu
S.
,
Yang
J.
and
Xie
Y.
2011
Metallic few-layered VS2 ultrathin nanosheets: High two-dimensional conductivity for in-plane supercapacitors
J. Am. Chem. Soc.
133
17832
8
11.
Balamuralitharan
B.
,
Karthick
S. N.
,
Balasingam
S. K.
,
Hemalatha
K. V.
,
Selvam
S.
,
Raj
J. A.
,
Prabakar
K.
,
Jun
Y.
and
Kim
H.-J.
2017
Hybrid Reduced Graphene Oxide/Manganese Diselenide Cubes: A New Electrode Material for Supercapacitors
Energy Technol.
5
1953
62
12.
Bissett
M. A.
,
Kinloch
I. A.
and
Dryfe
R. A. W.
2015
Characterization of MoS2-Graphene Composites for High-Performance Coin Cell Supercapacitors
ACS Appl. Mater. Interfaces
7
17388
98
This content is only available via PDF.
You do not currently have access to this content.