We briefly considered the effect of electric field on magnon dispersion in zigzag graphene nanoribbons via density functional theory. We implemented the generalized Bloch theorem combined with the constraint scheme approach to calculate the magnon energies over the first Brillouin zone. By observing the magnon dispersion, we found the small increases of spin stiffness and critical temperature up to a certain value, but then remain constant. We conclude that the magnetism in zigzag graphene nanoribbons disappears below room temperature.
REFERENCES
1.
N. M.
Rosengaard
and B.
Johansson
, Phys. Rev. B
55
, 14975
(1997
).2.
S. V.
Halilov
, H.
Eschrig
, A. Y.
Perlov
, and P. M.
Oppeneer
, Phys. Rev. B
58
, 293
(1999
).3.
S.
Shallcross
, A. E.
Kissavos
, V.
Meded
, and A. V.
Ruban
, Phys. Rev. B
72
, 104437
(2005
).4.
T. B.
Prayitno
and F
Ishii
, J. Phys. Soc. Jpn
88
, 054701
(2019
).5.
F.
Essenberger
, S.
Sharma
, J. K.
Dewhurst
, C.
Bersier
, F.
Cricchio
, L.
Nordström
, and E. K. U.
Gross
, Phys. Rev. B
84
, 174425
(2011
).6.
V. V.
Kulish
, and W.
Huang
, J. Mater. Chem. C
5
, 8734
(2017
).7.
T. B.
Prayitno
, Physica E
129
, 114641
(2021
).8.
T. B.
Prayitno
and F Ishii, J. Phys. Soc. Jpn
87
, 114709
(2018
).9.
L. M.
Sandratskii
, Adv. Phys.
47
, 91
(1998
).10.
J. P.
Perdew
, K.
Burke
, and M.
Ernzerhof
, Phys. Rev. Lett.
77
, 3865
(1996
).11.
12.
C.
Huang
, H.
Wu
, K.
Deng
, and E.
Kan
, J. Phys. Chem. C
121
, 1371
(2017
).13.
J. T.
Liang
, X. H.
Yan
, Y.
Zhang
, Y. D.
Guo
, and Y.
Xiao
, J. Magn. Magn. Mater.
480
, 101
(2019
).14.
15.
This content is only available via PDF.
©2023 Authors. Published by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.