The aim of this study was to explore how cross-country math trails utilizing augmented reality and 3D printing technologies can be designed to learn mathematical modelling. An explorative design research study has been conducted in spatial geometry course at a teacher education institution. With the help of GeoGebra, students successfully applied the theorems in geometry that they learned to construct 3D objects of the selected buildings. The modelling tasks associated with these objects were then uploaded to the MathCityMap Portal and linked into specific math trails. Users in other countries can access these math trails and their tasks using the MathCityMap App. Tasks accompanied by files that can be accessed in augmented reality or 3D printed. These objects helped users in some parts of the mathematical modelling cycle, especially in investigating situations and experimenting and visualizing models.

1.
M. M.
Shoaf
,
H.
Pollak
and
J.
Schneider
,
Math Trails. COMAP.
(
2004
).
2.
A. N.
Cahyono
and
M.
Ludwig
,
Eurasia J. Math. Sci. Technol. Educ.
15
,
1
(
2019
).
3.
M.
Ludwig
and
J.
Jesberg
,
Procedia - Soc. Behav. Sci.
, (
2015
).
4.
A. N.
Cahyono
,
Learning Mathematics in a Mobile App-Supported Math Trail Environment
(
Springer International Publishing
,
2018
).
5.
I.
Gurjanow
,
S.
Jablonski
,
M.
Ludwig
and
J.
Zender
,
Modellieren mit MathCityMap
(
2019
).
6.
A. N.
Cahyono
,
Y. L.
Sukestiyarno
,
M.
Asikin
,
M.
Miftahudin
,
M. G. K.
Ahsan
and
M.
Ludwig
,
J. Math. Educ.
,
11
(
2
),
181
192
(
2020
).
7.
G.
Greefrath
and
H. S.
Siller
,
GeoGebra as a Tool in Modelling Processes BT - Uses of Technology in Primary and Secondary Mathematics Education: Tools, Topics and Trends
(
L.
Ball
,
P.
Drijvers
,
S.
Ladel
,
H.-S.
Siller
,
M.
Tabach
, &
C.
Vale
, Eds.; pp.
363
374
). (
Springer International Publishing
,
2018c
).
8.
D.
Jarvis
,
M.
Hohenwarter
, and
Z.
Lavicza
, Geogebra, Democratic Access, and Sustainability. In
L.
Bu
&
R.
Schoen
(Eds.),
Model-Centered Learning: Pathways to Mathematical Understanding Using GeoGebra
(
Sense Publishers
,
2011a
) pp.
231
.
9.
Z.
Lavicza
,
K.
Fenyvesi
,
D.
Lieban
,
H.
Park
,
M.
Hohenwarter
,
J.D.
Mantecon
and
T.
Prodromou
,
Mathematics learning through Arts, Technology and Robotics: multi-and transdiscpilinary STEAM approaches
.
East Asia Regional Conference on Mathematics Education
, September, (
2018
).
10.
Z.
Lavicza
and
B.
Koren
,
S. J. Cho.
Ed.
5
621
624
(
2015
).
11.
G.
Greefrath
,
C.
Hertleif
and
H. S.
Siller
,
ZDM
,
50
(
1
),
233
244
. (
2018
).
12.
G.
Greefrath
and
H. S.
Siller
,
Digit. Werkzeuge Simul. math. Model.
3
22
, (
2018a
).
13.
Siller
,
H.-S.
, &
Greefrath
,
Modelling Tasks in Central Examinations Based on the Example of Austria
(
Springer puclisher
,
2020
) (pp.
383
392
).
14.
C.
Bergsten
and
P.
Frejd
,
ZDM
,
51
(
6
),
941
953
. (
2019
)
15.
T. D.
Holmlund
,
K.
Lesseig
and
D.
Slavit
,
Int. J. STEM Educ.
, (
2018
).
This content is only available via PDF.
You do not currently have access to this content.