One component of local revenue is the motor vehicle parking levy tax in Bandar Lampung City which has not been optimal in its implementation. Currently, parking attendants experience several problems in collecting parking fees in the field, there is no automatic and real-time information on two-wheeled vehicles or motorcycles, and the processing of vehicle parking tax levies is not transparent. To overcome this problem, it is necessary to develop a system design that can assist parking officers in monitoring vehicles, this system will be facilitated by a vehicle parking monitoring tool in the form of a portable gadget. The method in this study starts from reading the vehicle number plate through a camera device then image data is processed using segmentation using the K-Mean clustering method, with preprocessing stages, image data normalization, calculating similarity, classification, segmentation training, testing, Result results. In building a system that is designed to be implemented in an environment with the relevant level of technological readiness, and this system will be facilitated by a vehicle parking monitoring device in the form of a portable gadget or commonly called “Parking Axis” which is easy to use by parking officers in collecting parking fees at field, as well as simplify and make the parking payment system more transparent and accountable.

1.
S. P.
Jainaveen
,
M. J. B.
Reddy
, and
D. K.
Mohanta
,
Aust. J. Multi-Disciplinary Eng.
13
,
2
17
(
2017
).
2.
A.
Henao
and
W. E.
Marshall
,
J. Transp. Land Use
12
,
127
147
(
2019
).
3.
H.
Do
and
J. Y.
Choi
,
IEEE Access
8
,
171551
171559
(
2020
).
4.
S.
Karnila
,
S.
Irianto
, and
R.
Kurniawan
,
Int. J. Adv. Eng. Res. Sci.
6
,
91
98
(
2019
).
5.
F.
Zhang
,
W.
Liu
,
X.
Wang
, and
H.
Yang
,
Transp. Res. Part C Emerg. Technol.
117
,
102676
(
2020
).
6.
J.
Parmar
,
P.
Das
, and
S. M.
Dave
,
Journal of Traffic and Transportation Engineering (English Edition)
7
,
111
124
(
2020
).
7.
M.
Brilliant
,
S. Y.
Irianto
,
S.
Karnila
, and
R. Z. Abdul
Aziz
, “
Land Cover Changes Detection Using Region Growing Segmentation
,”
IOP Conference Series
1529 (
IOP Publishing
,
2020
) pp.
022066
8.
D.
Zhao
and
G. P.
Ong
,
Transp. Res. Part A Policy Pract.
148
,
49
63
(
2021
)
9.
M. A.M.
Salem
and
S
Almotairi
,
Int. J. Innov. Technol. Explor. Eng.
8
,
928
933
(
2019
).
10.
G.
Ali
,
T.
Ali
,
M.
Irfan
,
U.
Draz
,
M.
Sohail
,
A.
Glowasz
,… and
C.
Martis
,
Electron.
9
,
1969
(
2020
).
11.
F.
Al-Turjman
and
A.
Malekloo
,
Sustainable Cities and Society
49
,
101608
(
2019
).
12.
J.
Sánchez
,
N.
Monzón
, and
A.
Salgado
,
Image Process. Line
8
,
305
328
(
2018
).
13.
R. O.
Duda
and
P. E.
Hart
,
Commun. ACM
15
,
327
336
(
1992
).
14.
L.
Xu
, “
A New Method for License Plate Detection Based On Color and Edge Information of Lab Space
,” in
International Conference on Multimedia and Signal Processing Proceedings
11
(
IEEE
,
China
,
2011
) pp.
99
102
.
15.
D. A.
Priandini
,
J.
Nangi
,
M.
Muchtar
, and
J. Y.
Sari
, “Deteksi Area Plat Mobil Menggunakan Operasi Morfologi Citra,” in
Semin. Nas. Teknol. Terap. Berbas. Kearifan Lokal Proceeding
(
Program Pendidikan Vokasi
,
Universitas Haluoleo, Kendari
2018
.)
16.
J.
Tarigan
,
Nadia
,
R.
Diedan
, and
Y.
Suryana
,
Procedia Computer Science
116
,
365
372
(
2017
).
17.
S.
Agarwal
,
K.
Goel
,
A.
Jain
, and
P.
Singh
,
Int. J. Innov. Technol. Explor. Eng.
8
,
4057
4063
(
2019
).
18.
K. K.
Kim
,
K. I.
Kim
,
J. B.
Kim
, and
H. J.
Kim
, “Learning-based approach for license plate recognition,” in
Neural Networks Signal Process.-Proc. IEEE Work
.
2
(
IEEE
,
Sydney
,
2000
) pp.
614
623
19.
E. W.
Abood
,
Int. J. Res.-GRANTHAALAYAH
5
,
13
22
(
2017
).
21.
L.
Zhang
,
P.
Wang
,
H.
Li
,
Z.
Li
,
C.
Shen
, and
Y.
Zhang
,
IEEE Trans. Intell. Transp. Syst.
22
,
79
86
(
2020
).
22.
J.
Singh
and
B.
Bhushan
, “Real Time Indian License Plate Detection using Deep Neural Networks and Optical Character Recognition using LSTM Tesseract,” in
Proceedings of International Conference on Computing, Communication, and Intelligent Systems
(
IEEE
,
India
,
2019
) pp.
347
352
23.
R.
Diachok
,
R.
Dunets
, and
H.
Klym
, “System of detection and scanning bar codes from Raspberry Pi web camera,” in
International Conference on Dependable Systems, Services and Technologies (DESSERT) Proceeding
9
(
IEEE
,
Ukraine
,
2018
) pp.
184
187
This content is only available via PDF.
You do not currently have access to this content.