This article discusses issues related to the study of hydraulic resistance on pressure pipelines of hydropower plants pumping turbid water flow. Experimental studies, carried out in laboratory conditions on a bench model, pursued the main goal of studying the nature of changes in pressure losses in various characteristic sections of pipelines for conditions of turbid water flow. All experimental studies were carried out for pressure pipelines with different sections of local hydraulic resistances and resistances along the length of the section.

To clarify the general picture of the pressure change in different sections of the pressure pipeline for the conditions of clean and turbid flow, six series of experiments were carried out. Each series included at least 4 experiments differing in the flow rate supplied to the model installation. The flow rates were as follows: Q1 = Qmax; Q2 = 0.6Qmax; Q3 = 0.3Qmax; Q4 = Qmin.

Experimental studies have been carried out in laboratory conditions on a bench model and the nature of the change in pressure losses in various characteristic sections of pipelines for conditions of turbid water flow has been studied.

1.
N.
Ikramov
,
T.
Majidov
,
E.
Kan
, and
D.
Akhunov
,
IOP Conf. Ser. Mater. Sci. Eng
.
1030
,
012125
(
2021
)
2.
N.
Ikramov
,
T.
Majidov
,
E.
Kan
, and
I.
Ikromov
,
in IOP Conf. Ser. Mater. Sci. Eng.
(
Institute of Physics Publishing
,
2020
), p.
072009
3.
R.
Koech
,
R.
Mossad
,
R.
Smith
, and
M.
Gillies
,
J. Irrig. Drain. Eng.
141
,
04014052
(
2015
)
4.
A. A.
Korshak
,
Neft. Khozyaystvo - Oil Ind.
2019
,
105
(
2019
)
5.
G.
Yildirim
,
J.
Irrig
.
Drain. Eng.
141
, NIL_37 (
2015
)
6.
A.
Basareuski
,
BIO Web Conf
.
10
,
01001
(
2018
)
7.
Á. M.
Rodríguez-Pérez
,
C.
Pérez-Calañas
, and
I.
Pulido-Calvo
,
Water Resour. Manag.
35
,
1977 (2021
)
8.
G.
Yıldırım
,
J. Irrig. Drain. Eng.
141
,
04014079
(
2015
)
9.
R. V.
Kale
,
R. P.
Singh
, and
P. S.
Mahar
,
J. Irrig. Drain. Eng.
134
,
137
(
2008
)
10.
A.
Menapace
,
W.
Boscheri
,
M.
Baratieri
, and
M.
Righetti
,
Int. J. Heat Mass Transf.
161
, (
2020
)
11.
M. E.
Mohyaldinn
,
J. Eng. Sci. Technol.
9
,
463
(
2014
)
12.
R.
Wang
,
Z.
Wang
,
X.
Wang
,
H.
Yang
, and
J.
Sun
,
J. Water Resour. Plan. Manag.
140
,
04014005
(
2014
)
13.
S.
Huang
,
Y.
Wei
,
C.
Guo
, and
W.
Kang
,
Processes
7
, (
2019
)
14.
J.
Wang
,
R.
Chen
,
T.
Yang
,
T.
Wei
, and
X.
Wang
,
J. Hydrol.
595
, (
2021
)
15.
D.
Chamba
,
S.
Zubelzu
, and
L.
Juana
,
Agric. Water Manag.
226
, (
2019
)
16.
B.
Li
,
N.
Li
,
D.
Li
, and
S.
Gong
,
J. Irrig. Drain.
40
,
144
(
2021
)
17.
J.
Šoukal
,
F.
Pochylý
,
M.
Varchola
,
A. G.
Parygin
,
A. V.
Volkov
,
G. P.
Khovanov
, and
A. V.
Naumov
,
Therm. Eng
. (
English Transl
.
Teploenerg
.
62
,
862
(
2015
)
18.
V. N.
Shiryaev
,
Y. S.
Urzhumova
, and
S. A.
Tarasyants
,
Sci. J. Russ. Sci. Res. Inst. L. Improv. Probl.
(
2021
)
19.
F.
Shaazizov
,
E3S Web Conf
.
264
, (
2021
)
20.
F.
Shaazizov
,
E3S Web Conf
.
264
, (
2021
)
21.
F.
Shaazizov
,
D.
Shukurov
, and
E.
Shukurov
,
IOP Conf. Ser. Mater. Sci. Eng
.
1030
,
012142
(
2021
)
22.
F.
Shaazizov
,
IOP Conf. Ser. Mater. Sci. Eng
.
1030
,
012141
(
2021
)
23.
F.
Shaazizov
and
D.
Shukurov
,
in IOP Conf. Ser. Mater. Sci. Eng.
(
2020
)
24.
F.
Shaazizov
,
A.
Badalov
,
D.
Shukurov
, and
D.
Yulchiev
,
IOP Conf. Ser. Mater. Sci. Eng
.
883
,
012018
(
2020
)
This content is only available via PDF.
You do not currently have access to this content.