Cocoa is among the main commodities in Malaysia. The industry of cocoa fruit processing discards an abundant quantity of pod husk, which is rich in cellulose. The cellulose can be modified into its derivative, such as carboxymethyl cellulose (CMC). In this study, the cellulose was prepared through the extraction process of cocoa pod husk as raw material. The cocoa pod husk has undergone alkaline treatment to extract cellulose using 12% w/v sodium hydroxide (NaOH) and 6% sodium hypochlorite (NaOCl). Then, the CMC was synthesized through the reaction of cellulose with various NaOH concentrations and monochloroacetate (NaMCA) amounts. The yield percentage and functional groups of cellulose were studied. The yield percentage of cellulose is 34.96%. The results from cellulose FTIR show peaks at wavelengths about 1056.27 and 847.39 cm−1, which are signals for the alcohol and ethers in the cellulose chain and the B-glycosidic linkages of the glucose. While the yield of CMC ranges from 82.20 to 206.80. Synthesized CMC from the cellulose of agricultural waste can be applied to produce biopolymer film, an alternative to commercial CMC and other synthetic polymers. To conclude, this study was conducted to extract CMC from cellulose of agricultural waste among Malaysia's main commodities, which is cocoa pod husk. Therefore, the findings from this study were beneficial to produce CMC derives from agricultural waste among the main commodities of Malaysia for useful applications.

1.
A.
Suprabawati
,
L. S.
Aisyah
and
M. R.
Firzatullah
, “
Crosslinked CMC-urea hydrogel made from natural carboxymethyl cellulose (CMC) as slow-release fertilizer coating
.”
AIP Conference Proceedings.
Vol.
2243
. No.
1
. AIP Publishing LLC,
2020
.
2.
B. W.
Chieng
,
S. H.
Lee
,
N. A.
Ibrahim
,
Y. Y.
Then
and
Y. Y.
Loo
,
Polymers
9
(
8
),
355
(
2017
).
3.
C. M.
Huang
,
P.
Chia
,
C. S.
Lim
,
J.
Nai
,
D. Y.
Ding
,
P.
Seow
and
E. W.
Chan
,
Cellul. Chem. Technol.
51
(
7-8
),
665
672
(
2017
).
4.
G. S
Hutomo
,
D. W.
Marseno
and
S.
Anggrahini
,
Afr. J. Food Sci.
6
(
6
),
180
185
(
2012
).
5.
I. S A.
Zailani
, Aviceena,
D. N.
Jimat
and
M. S.
Jami
,
Int. J. Appl. Eng. Res.
11
(
19
),
9876
9879
(
2016
).
6.
J. X.
Sun
,
X. F.
Sun
,
H.
Zhao
and
R. C.
Sun
,
Polym. Degrad. Stab.
84
(
2
),
331
339
(
2004
).
7.
M. I. H.
Mondal
,
M. S.
Yeasmin
and
M. S.
Rahman
,
Int. J. Biol. Macromol.
79
,
144
150
(
2015
).
8.
M.
Lubis
,
A.
Gana
,
S.
Maysarah
,
M. H. S.
Ginting
and
M. B.
Harahap
,
IOP Conf. Ser.: Mater. Sci. Eng.
309
(
2018
).
9.
M. P.
Adinugraha
and
D. W.
Marseno
,
Carbohydr. Polym.
62
(
2
),
164
169
(
2005
).
10.
M.
Troedec
,
D.
Sedan
,
C.
Peyratout
,
J. P.
Bonnet
,
A.
Smith
,
R.
Guinebretiere
,
V.
Gloaguen
and
P.
Krausz
,
Compos. A: Appl. Sci. Manuf.
39
(
3
),
514
522
(
2008
).
11.
N. M.
Ismail
and
A.
Bono
,
J. Appl. Sci.
10
(
21
),
2530
2536
(
2010
).
12.
P.
Rodsamran
and
R.
Sothornvit
,
Carbohydr. Polym.
171
,
94
101
(
2017
).
13.
S. Asl.
Alizadeh
,
M.
Mousavi
and
M.
Labbafi
,
J. Food Process. Technol.
8
(
8
), (
2017
).
14.
S. E. M.
Selke
,
J. D.
Culter
and
R. J.
Hernandez
, “Plastics Packaging.” 2nd edition.
Cincinnati
:
Hanser Publishers
. pp.
57
65
.
15.
S.
Mansouri
,
R.
Khiari
,
F.
Bettaieb
and
F.
Mhenni
,
J. Polym. Environ.
23
(
2
),
190
198
(
2015
).
16.
W. M.
Wang
,
Z. S.
Cai
,
J. Y.
Yu
and
Z. P.
Xia
,
Fibers Polym.
10
(
6
),
776
780
(
2009
).
17.
X. F.
Sun
,
F.
Xu
,
R. C.
Sun
,
P.
Fowler
and
M. S.
Baird
,
Carbohydr. Res.
340
(
1
),
97
106
(
2005
).
18.
Z.
Daud
,
A.
Sari
,
M.
Kassim
,
A. M.
Aripin
,
H.
Awang
and
Z. M.
Hatta
,
Aust. J. Basic Appl. Sci.
7
(
9
),
406
411
(
2013
).
This content is only available via PDF.
You do not currently have access to this content.