Cervical cancer is a very prevalent disease among women all over the world. Cervical cancer can form in the cervix cells found in the lower uterus. Women all over the world are at death risk as a result of this type of cancer. Cervical cancer has seven stages: normal intermediate, normal superficial, columnar, mild dysplasia, moderate dysplasia, severe dysplasia, and carcinoma in situ. Doctors in hospitals find it difficult to recognise cancer cells as it is challenging to view a nucleus through the naked eye. A normal cell’s nucleus is smaller than an abnormal cell’s nucleus. It is possible to calculate the size of the abnormal nucleus with the naked eye in order to assess the stages of cervical cancer. A tool for identifying and quantifying Pap smear cell images to detect cervical cancer has recently been suggested by several researchers. This method has the potential to increase detection and classification precision, resulting in improved results with balanced data and samples. A comprehensive study of nucleus detection cervical cancer classification techniques was conducted in this paper. As a result of the findings, the function database, detection and classification process, and device performance were all investigated for further evaluation.

1.
M.
Arya
,
N.
Mittal
, and
G.
Singh
, “
Clustering Techniques on Pap-smear Images for the Detection of Cervical Cancer
,”
J. Biol. Today’s World
, vol.
07
, no.
01
, pp.
30
35
,
2018
.
2.
N.
NAHRAWI
,
W. A.
MUSTAFA
, and
S. N. A. M.
KANAFIAH
, “
Knowledge of Human Papillomavirus ( HPV ) and Cervical Cancer among Malaysia Residents : A Review
,”
Sains Malaysiana
, vol.
49
, no.
7
, pp.
1687
1695
,
2020
.
3.
W. A.
Mustafa
,
A.
Halim
, and
K. S. A.
Rahman
, “
A Narrative Review : Classification of Pap Smear Cell Image for Cervical Cancer Diagnosis
,”
Oncologie
, vol.
22
, no.
2
, pp.
53
63
,
2020
.
4.
WHO | Cervical cancer
,”
WHO
,
2018
.
5.
J.
Norup
, “
Classification of pap-smear data by transductive neuro-fuzzy methods
,”
2005
.
6.
Wan Azani
Mustafa
,
Low Zhe
Wei
, and
Khairul Shakir Ab
Rahman
, “
Automated Cell Nuclei Segmentation on Cervical Smear Images Using Structure Analysis
,”
J. Biomimetics, Biomater. Biomed. Eng.
, vol.
51
, pp.
105
115
,
2021
.
7.
A.
Halim
,
W. A.
Mustafa
,
W. K. W.
Ahmad
,
H. A.
Rahim
, and
H.
Sakeran
, “
Nucleus Detection on Pap Smear Images for Cervical Cancer Diagnosis : A Review Analysis
,”
Oncologie
, vol.
23
, no.
1
, pp.
73
88
,
2021
.
8.
N.
Nahrawi
,
W. A.
Mustafa
,
S. N. A. M.
Kanafiah
,
W. K. W.
Ahmad
,
M. N. K. H.
Rohani
, and
H. A.
Rahim
, “
Nucleus Detection on Pap Smear Image Using Mathematical Morphology Approach
,”
J. Biomimetics, Biomater. Biomed. Eng.
, vol.
49
, pp.
53
61
,
2021
.
9.
E. I.
Putri
,
R.
Magdalena
, and
L.
Novamizanti
, “
Detection of Cervical Cancer Disease using Adaptive Thresholding Method by Image Processing
,” vol.
2
, pp.
477
486
,
2015
.
10.
N.
Merlina
,
E.
Noersasongko
,
P.
Nurtantio
,
M. A.
Soeleman
,
D.
Riana
, and
S.
Hadianti
, “
Detecting the Width of Pap Smear Cytoplasm Image Based on GLCM Feature
,” in
Smart Innovation, Systems and Technologies
,
2021
.
11.
S. K.
Singh
,
R.
Singh
, and
A.
Goyal
, “
Semi-Automatic Segmentation of Overlapping Cells in Pap Smear Image
,”
Proc. - 4th Int. Conf. Comput. Sci. ICCS 2018
, pp.
161
165
,
2019
.
12.
M.
Arya
,
N.
Mittal
, and
G.
Singh
, “
Cervical Cancer Detection Using Segmentation on Pap smear Images
,”
2016
, pp.
1
5
.
13.
P. B.
Shanthi
and
K. S.
Hareesha
, “
Comparative analysis of nucleus segmentation techniques for malignancy detection of pap smear cervical cells
,”
J. Comput. Methods Sci. Eng.
, vol.
19
, no.
2
, pp.
507
522
,
2019
.
14.
Indrabayu
,
A. R.
Fatmasari
, and
I.
Nurtanio
, “
A colour space based detection for cervical cancer using fuzzy C-means clustering
,” in
ACM International Conference Proceeding Series
,
2017
, vol.
Part F1309
, pp.
137
141
.
15.
R.
Kurniawan
,
I.
Muhimmah
,
A.
Kurniawardhani
, and
I.
Indrayanti
, “
Segmentation of Overlapping Cervical Cells in Normal Pap Smear Images Using Distance-Metric and Morphological Operation
,”
CommIT (Communication Inf. Technol. J.
, vol.
11
, no.
1
, p.
25
,
2017
.
16.
P.
Agarwal
,
A.
Sao
, and
A.
Bhavsar
, “
Mean-shift based segmentation of cell nuclei in cervical PAP-smear images
,” in
2015 5th National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics
,
NCVPRIPG
2015,
2016
.
17.
W.
William
,
A.
Ware
,
A. H.
Basaza-Ejiri
, and
J.
Obungoloch
, “
Automated Diagnosis and Classification of Cervical Cancer from pap-smear Images
,”
2019 IST-Africa Week Conf. IST-Africa 2019
, pp.
1
11
,
2019
.
18.
P.
Wang
,
L.
Wang
,
Y.
Li
,
Q.
Song
,
S.
Lv
, and
X.
Hu
, “
Automatic cell nuclei segmentation and classification of cervical Pap smear images
,”
Biomed. Signal Process. Control
, vol.
48
, pp.
93
103
,
2019
.
19.
A.
Bhan
,
D.
Sharma
, and
S.
Mishra
, “
Computer Based Automatic Segmentation of Pap smear Cells for Cervical Cancer Detection
,”
2018 5th Int. Conf. Signal Process. Integr. Networks, SPIN 2018
, pp.
883
887
,
2018
.
20.
A.
Ray
,
I. K.
Maitra
, and
D.
Bhattacharyya
, “
Detection of Cervical Cancer at an Early Stage Using Hybrid Segmentation Techniques from PAP Smear Images
,”
Int. J. Adv. Sci. Technol.
, vol.
112
, pp.
23
32
,
2018
.
21.
S. K.
Singh
and
A.
Goyal
, “
A novel approach to segment nucleus of uterine cervix pap smear cells using watershed segmentation
,”
Commun. Comput. Inf. Sci.
, vol.
712
, pp.
164
174
,
2017
.
22.
V.
Acharya
and
P.
Kumar
, “
Segmentation of Pap Smear Images to Diagnose Cervical Cancer Types and Stages
,”
2018 Int. Conf. Adv. Comput. Commun. Informatics, ICACCI 2018
, pp.
595
603
,
2018
.
23.
M. E.
Plissiti
and
C.
Nikou
, “
Cervical cell classification based exclusively on nucleus features
,” in
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
,
2012
, vol.
7325 LNCS
, no.
PART 2
, pp.
483
490
.
24.
A. H.
Mbaga
, “
Pap Smear Images Classification for Early Detection of Cervical Cancer
,” vol.
118
, no.
7
, pp.
10
16
,
2015
.
25.
R.
Kumar
,
R.
Srivastava
, and
S.
Srivastava
, “
Detection and Classification of Cancer from Microscopic Biopsy Images Using Clinically Significant and Biologically Interpretable Features
,”
J. Med. Eng.
, vol.
2015
, pp.
1
14
,
2015
.
26.
M.
Sharma
,
S. Kumar
Singh
,
P.
Agrawal
, and
V.
Madaan
, “
Classification of Clinical Dataset of Cervical Cancer using KNN
,”
Indian J. Sci. Technol.
, vol.
9
, no.
28
,
2016
.
27.
M. K.
Bhowmik
,
S. D.
Roy
,
N.
Nath
, and
A.
Datta
, “
Nucleus region segmentation towards cervical cancer screening using AGMC-TU Pap-smear dataset
,” in
ACM International Conference Proceeding Series
,
2018
, pp.
44
53
.
28.
H.
Nisar
,
L. Y.
Wai
, and
L. S.
Hong
, “
Segmentation of overlapping cells obtained from pap smear test
,”
2017 IEEE Life Sci. Conf. LSC 2017
, vol.
2018-Janua
, pp.
254
257
,
2018
.
29.
B.
Taha
,
J.
Dias
, and
N.
Werghi
, “
Classification of cervical-cancer using pap-smear images: A convolutional neural network approach
,” in
Communications in Computer and Information Science
,
2017
, vol.
723
, pp.
261
272
.
30.
J.
Ke
,
Z.
Jiang
,
C.
Liu
,
T.
Bednarz
,
A.
Sowmya
, and
X.
Liang
, “
Selective detection and segmentation of cervical cells
,” in
ACM International Conference Proceeding Series
,
2019
, pp.
55
61
.
31.
Z.
Yang
,
D.
Yi
, and
J.
Shen
, “
Computer-aided cervical cancer screening method based on multi-spectral narrow-band imaging
,” in
ACM International Conference Proceeding Series
,
2019
, pp.
62
66
.
32.
S. M. T
,
U. B. S
, and
S. S
, “
Papsmear Image based Detection of Cervical Cancer
,”
Int. J. Comput. Appl.
, vol.
45
, no.
20
, pp.
35
40
,
2012
.
33.
S. N.
Sulaiman
,
N. A.
Mat-Isa
,
N. H.
Othman
, and
F.
Ahmad
, “
Improvement of features extraction process and classification of Cervical cancer for the NeuralPap system
,”
Procedia Comput. Sci.
, vol.
60
, no.
1
, pp.
750
759
,
2015
.
34.
R.
Mufidah
,
M.
Faturrahman
,
I.
Wasito
,
F. D.
Ghaisani
, and
N.
Hanifah
, “
Automatic nucleus detection of pap smear images using stacked sparse autoencoder (SSAE
),” in
ACM International Conference Proceeding Series
,
2017
, vol.
Part F1320
, pp.
9
13
.
35.
W.
Mousser
and
S.
Ouadfel
, “
Deep feature extraction for pap-smear image classification: A comparative study
,” in
ACM International Conference Proceeding Series
,
2019
, vol.
Part F1482
, pp.
6
10
.
36.
C.
Li
,
D.
Xue
,
X.
Zhou
,
J.
Zhang
,
H.
Zhang
,
Y.
Yao
,
F.
Kong
,
L.
Zhang
, and
H.
Sun
, “
Transfer learning based classification of cervical cancer immunohistochemistry images
,” in
ACM International Conference Proceeding Series
,
2019
, pp.
102
106
.
37.
S. P.
Deng
,
L.
Zhu
, and
D. S.
Huang
, “
Predicting Hub Genes Associated with Cervical Cancer through Gene Co-Expression Networks
,”
IEEE/ACM Trans. Comput. Biol. Bioinforma.
, vol.
13
, no.
1
, pp.
27
35
,
2016
.
This content is only available via PDF.
You do not currently have access to this content.