Complementary metal-oxide-semiconductor (CMOS) technology is a dominant technology adopted in the manufacturing of integrated circuits (IC) for decades. When the technology is scaled below 5 nm, the challenges such as the short-channel effect, source-to-drain tunnelling, leakage current, and hot carrier will become more significant in terms of performance degradation. The carbon nanotube field-effect transistor (CNFET) device is the most suitable device as an alternative to the metal-oxide semiconductor field-effect transistor (MOSFET) due to their similarity of the structure and electronic properties. In this paper, the optimized design of the 32 nm and 10 nm two-stage CNFET op-amps are evaluated, analysed, and compared. Simulation results indicate that the optimized 10 nm circuit possess higher unity-gain bandwidth (UGB), open-loop gain, and common-mode rejection ratio (CMRR) as compared to 32 nm at the cost of the power supply rejection ratio (PSRR), phase margin, input common mode voltage range (ICMR), and output resistance.

1.
S.
Bampi
and
R.
Reis
,
IFIP Adv. Inf. Commun. Technol.
360
,
21
(
2011
).
2.
S.
Chopra
and
S.
Subramaniam
, in
Int. J. Innov. Sci. Eng. Technol.
(
2015
), pp.
1055
1057
.
3.
N.
Anitha
and
P. Dr.
Srividya
,
Int. J. Curr. Res.
9
,
58019
(
2017
).
4.
ITRS
, in (
2015
), pp.
1
87
.
5.
T.
Mizutani
,
Y.
Ohno
, and
S.
Kishimoto
, in
2008 Int. Conf. Adv. Semicond. Devices Microsystems
(
IEEE
,
Smolenice
,
2008
), pp.
1
8
.
6.
P.A. Gowri
Sankar
and
K. Udhaya
Kumar
,
Eur. J. Sci. Res.
60
,
342
(
2011
).
7.
A.
Bhargav
and
J.K.
Saini
,
Micro Nanosyst.
11
,
133
(
2019
).
8.
E.S.
Ismail
,
I.G.
Morsi
, and
A.A.
Nasser
, in
2018 35th Natl. Radio Sci. Conf.
(
IEEE
,
Cairo
,
2018
), pp.
361
368
.
9.
S.
Waykole
and
V.S.
Bendre
, in
2018 Fourth Int. Conf. Comput. Commun. Control Autom.
(
IEEE
,
Pune
,
2018
), pp.
1
6
.
10.
E.
Raguvaran
,
K.S.N.
Vishnu
, and
S.H.
Chitra
, in
2012 Int. Conf. Comput. Commun. Informatics
(
IEEE
,
Coimbatore
,
2012
), pp.
1
5
.
11.
Z.
Liu
,
T.
Pan
,
S.
Jia
, and
U.
Wang
, in
2017 IEEE 12th Int. Conf. ASIC
(
IEEE
,
Guiyang
,
2017
), pp.
207
210
.
12.
J.K.
Saini
,
A.
Srinivasulu
, and
R.
Kumawat
, in
2018 Int. SoC Des. Conf.
(
IEEE
,
Daegu
,
2018
), pp.
145
146
.
13.
A.
Al-Shaggah
,
M.
Khasawneh
, and
A.
Rjoub
, in
2015 9th Jordanian Int. Electr. Electron. Eng. Conf.
(
IEEE
,
Amman
,
2015
), pp.
1
4
.
14.
W.H.
Chua
,
C.
Uttraphan
, and
B.C.
Kok
, in
2020 IEEE Student Conf. Res. Dev.
(
IEEE
,
Batu Pahat
,
2020
), pp.
222
227
.
15.
S.J.
Tans
,
A.R.M.
Verschueren
, and
C.
Dekker
,
Nature
393
,
49
(
1998
).
16.
S.
Iijima
and
T.
Ichihashi
,
Nature
363
,
603
(
1993
).
17.
D.S.
Bethune
,
C.H.
Klang
,
M.S.
De Vries
,
G.
Gorman
,
R.
Savoy
,
J.
Vazquez
, and
R.
Beyers
,
Nature
363
,
605
(
1993
).
18.
A.R.
Saifuddin
and
N.
Juniazah
,
J. Chem.
2013
,
1
(
2013
).
19.
J.
Deng
, Device Modeling and Circuit Performance Evaluation for Nanoscale Devices: Silicon Technology Beyond 45 Nm Node and Carbon Nanotube Field Effect Transistors,
Stanford University
,
Stanford
,
2007
.
20.
A.
Eatemadi
,
H.
Daraee
,
H.
Karimkhanloo
,
M.
Kouhi
,
N.
Zarghami
,
A.
Akbarzadeh
,
M.
Abasi
,
Y.
Hanifehpour
, and
S.
Joo
,
Nanoscale Res. Lett.
9
,
393
(
2014
).
21.
F. Ali
Usmani
and
M.
Hasan
,
Microelectronics J.
41
,
395
(
2010
).
This content is only available via PDF.
You do not currently have access to this content.