The starch synthase (SS) gene is one of the genes involved in the starch biosynthetic pathway. The expression level of SS regulates the starch quality and quantity in cassava. Therefore, the characteristics of SS in terms of nucleotide variations and its protein structure need to be identified using bioinformatics tools as the initial step to develop a cassava improvement strategy in the future. The nucleotides length and phylogenetic tree were constructed based on SS sequences of Manihot esculenta, Ipomea batatas and Solanum tuberosum showed low SS nucleotide variation. Characteristics of the motif and protein domain of starch synthase are derived from Glycosyltransferase 5 and 1 in.Rossmann fold protein motifs. Characteristics of the secondary structure of starch synthase subunits comprised of the alpha helix, extended strand, and random coil structures. The starch synthase subunits of cassava tubers have predicted secondary structures ranging from 173-524 alpha-helix, 83-161 beta-sheet, and 321-574 random coil. The identity of the starch synthase subunit sequences of cassava is considerably high, with a similarity index of 50-82% compared to the homolog structure template. The identified physicochemical characteristics were instability index, aliphatic index, and GRAVY which all indexes showed varying values.

1.
O. F.
Vilpoux
,
V.H.
Brito
,
M.P.
Cereda
.
Starches for Food Application
. (
Elsevier
,
2019
), pp :
103
105
.
2.
E.
Nuwamanya
,
Y.
Baguma
,
N.
Emmambux
,
J.
Taylor
,
R.
Patrick
,
J. Plant Breed. Crop Sci.
2
(
1
),
1
11
(
2010
).
3.
S. C.
Zeeman
,
J.
Kossmann
,
A. M.
Smith
,
Annu. Rev. Plant Biol.
61
,
209
234
(
2010
).
4.
Y. Z.
Li
,
J. Y.
Zhao
,
S. M.
Wu
,
X. W.
Fan
,
X. L.
Luo
,
B. S.
Chen
,
Scientific Reports
6
,
19823
(
2016
).
5.
C.
Martin
and
A. M.
Smith
,
Plant Cell
7
,
971
985
(
1995
).
6.
I.
Malinova
,
M.
Steup
,
J.
Fettke
,
Physiol Plant
149
,
25
44
(
2013
).
7.
Y.
Baguma
,
C.
Sun
,
M.
Borén
,
H.
Olsson
,
S.
Rosenqvist
,
J.
Mutisya
,
P. R.
Rubaihayo
,
C.
Jansson
,
Plant Signal. Behav.
3,
439
445
(
2008
).
8.
P.
Tappiban
,
D. R.
Smith
,
K.
Triwitayakorn
,
J. Bao, Trends Food Sci. Technol.
83
,
167
180
(
2020
).
9.
I. J.
Tetlow
,
M. K.
Morell
,
M. J.
Emes
.
J. Exp. Bot.
55
(
406
),
2131
2145
(
2004
).
10.
S. G.
Ball
and
M. K.
Morell
,
Annu. Rev. Plant Biol.
54
,
207
233
(
2003
).
11.
A.
Rahman
,
J.
Naher
,
Z. H.
Sabuj
,
U. K.
Nath
,
J. Bangladesh Agril. Univ.
18
(
S1
):
816
823
(
2020
).
12.
Z.
Guan
,
X.
Chen
,
H.
Xie
,
W.
Wang
,
Plant Physiol. Biochem.
102
,
92
96
(
2016
).
13.
Z.
Yang
,
Y.
Wang
,
S.
Xu
,
C.
Xu
,
C.
Yan
,
Evol. Bioinform.
9
,
239
249
(
2013
).
14.
Y.
Wang
,
Y.
Li
,
H.
Zhang
,
H.
Zhai
,
Q.
Liu
,
S.
Ho
,
Sci. Rep.
7,
2315
(
2017
).
15.
J. K.V.
Harsselaar
,
J.
Lorenz
,
M.
Senning
,
U.
Sonnewald
,
S.
Sonnewald
,
BMC Genomics
18
(
37
),
1
18
(
2017
).
16.
Y.
Li
,
W.
Lu
,
D.
Lyu
,
F.
Su
,
S.
Liu
,
H.
Li
,
X.
Wang
,
Z.
Liu
,
L.
Hu
,
Potato Research
61
,
309
326
(
2018
).
17.
A. V.
Lobanov
,
A. A.
Turanov
,
D. L.
Hatfield
,
V. N.
Gladyshev
,
Crit. Rev. Biochem. Mol. Biol.
45
(
4
),
257
265
(
2010
).
18.
S.
Miyazawa
,
PloS One
6
(
12
),
1
20
(
2011
).
19.
A.
Buschiazzo
,
J. E.
Ugalde
,
M. E.
Guerin
,
W.
Shepard
,
R. A.
Ugalde
,
P. M.
Alzari
,
EMBO J.
23
,
3196
3205
(
2004
).
20.
B.
Breton
,
L. S.
Najdrova
,
C.
Jeanneau
,
J.
Koca
,
A.
Imberty
,
Glycobiology
16
,
29
37
(
2006
).
21.
J.
Qu
,
S.
Xu
,
Z.
Zhang
,
G.
Chen
,
Y.
Zhong
,
L.
Liu
,
R.
Zhang
.,
J.
Xue
,
D.
Guo
,
Sci. Rep.
8
,
12736
(
2018
).
22.
L. A.
Kelley
,
S.
Mezulis
,
C. M.
Yates
,
M. N.
Wass
,
M. J. E.
Sternberg
,
Nat. Protoc.
10
(
5
),
845
58
(
2015
).
23.
E.
Gasteiger
,
C.
Hoogland
,
A.
Gattiker
,
S.
Duvaud
,
M. R.
Wilkins
,
R. D.
Appel
,
A.
Bairoch
. The Proteomics Protocol Handbook (
Humana Press
,
New Jersey
,
2005
), pp.
571
607
.
24.
L.
Damodharan
,
V.
Pattabhi
,
Biochem. Biophys. Res. Commun.
323
,
996
1002
(
2004
).
This content is only available via PDF.
You do not currently have access to this content.