Cassava storage roots contribute most to a wide range of starch-based applications for food, feed, medicine, cosmetics, biopolymers, and biofuels. Cassava cultivars differ in the proportions of amylose and amylopectin starch components, which are regulated molecularly by a set of genes encoding starch biosynthetic enzymes. We performed a relative expression analysis of nine candidate genes encoding cassava starch enzymes, namely sucrose synthase (SuSy), granule bound starch synthase (GBSS1, GBSS2), starch synthase (SS), starch branching enzyme (SBE2-1, SBE2-2, SBE3), debranching enzyme (DBE), and glucan water dikinase (GWD). As a reference gene, zinc finger protein (ZnF), was included in the study. Total RNAs were extracted from nine-month-old storage roots of five Indonesian cassava cultivars representing higher-starch cultivars (Adira-4, Kristal Merah, Menti, Revita RV-1) and a low-starch cultivar (Singkong Tali). In addition, we analyzed amylose contents from storage roots of the cultivars. Among those cultivars, Kristal Merah starches contained high amylose contents (27.53%) and three cultivars (Adira 4, Menti, and Revita RV-1) contained the average amylose (22–25%). Results showed that GBSS1 was relatively expressed in all cultivars, suggesting an accumulation of amylose in starch granules. Relative expressions of SS were observed abundantly in Kristal Merah and Singkong Tali, indicating that the first step of amylopectin biosynthesis occurred. However, low levels of DBE expression in Kristal Merah may limit debranching of poly-glucans or pre-amylopectin molecules during amylopectin synthesis. Singkong Tali showed the most abundant expressions of GWD, which encodes a hydrolytic enzyme for amylopectin breakdown. This may explain the low levels of starch in Singkong Tali. The current findings will add to existing knowledge of molecular regulation, specifically causal genes, involved in differential starch accumulation between cassava varieties/cultivars.

1.
R.
Howeler
,
N.
Lutaladio
,
G.
Thomas
.
Save and Grow: Cassava. A guide to sustainable production intensification.
1st ed. (
FAO
,
Roma
,
2013
), pp.
87
97
.
2.
M. A.
El-Sharkawy
,
J. H.
Cock
,
J. K.
Lynam
,
A.
del Pilar Hernàndez
and
L. F. L.
Cadavid
,
Field Crops Research
25
,
183
201
(
1990
).
3.
T. R. I.
Munyikwa
,
S. M. J.
Langeveld
,
S. N. I. M.
Salehuzzaman
,
E.
Jacobsen
and
R. J. E.
Visser
,
96
,
65
75
(
2004
).
4.
S.
Li
,
Y.
Cui
,
Y.
Zhou
,
Z.
Luo
,
J.
Liu
and
M.
Zhao
,
J. Sci. Food Agriculture
97
,
2282
90
(
2017
).
5.
M. A.
Ballicora
,
A. A.
Iglesias
and
J.
Preiss
,
Microbiol. Mol. Biol. Reviews
67
,
213
25
(
2003
).
6.
Y.
Baguma
,
C.
Sun
,
M.
Borén
,
H.
Olsson
,
S.
Rosenqvist
,
J.
Mutisya
, et al.,
Plant Signal. Behaviour
3
,
439
45
(
2008
).
7.
S. C.
Zeeman
,
J.
Kossmann
and
A. M.
Smith
,
Annu. Rev. Plant Biology
61
,
209
34
(
2010
).
8.
K.
Raemakers
,
M.
Schreuder
,
L.
Suurs
,
H.
Furrer-Verhorst
,
J.-P.
Vincken
,
N. C. d.
Vetten
, et al.,
Mol. Breeding
16
,
163
72
(
2005
).
9.
T.
Sánchez
,
E.
Salcedo
,
H.
Ceballos
,
D.
Dufour
,
G.
Mafla
,
N.
Morante
, et al.,
Starch - Stärke
61
,
12
9
(
2009
).
10.
M. Y.
Dong
,
X. W.
Fan
and
Y. Z.
Li
,
Planta
250
,
1621
35
(
2019
).
11.
P.
Tappiban
,
D. R.
Smith
,
K.
Triwitayakorn
and
J.
Bao
,
Trends Food Sci. Technology
83
,
167
80
(
2019
).
12.
S.
He
,
X.
Hao
,
S.
Wang
,
W.
Zhou
,
Q.
Ma
,
X.
Lu
, et al., bioRxiv, 2020.03.25.006957 (
2020
).
13.
T.
Saithong
,
O.
Rongsirikul
,
S.
Kalapanulak
,
P.
Chiewchankaset
,
W.
Siriwat
,
S.
Netrphan
, et al.,
BMC Syst. Biology
7
,
1
17
(
2013
).
14.
U.
Sonnewald
and
J.
Kossmann
,
Plant Biotechnol. Journal
11
,
223
32
(
2013
).
15.
J.-S.
Jeon
,
N.
Ryoo
,
T.-R.
Hahn
,
H.
Walia
and
Y.
Nakamura
,
Plant Physiol. Biochemistry
48
,
383
92
(
2010
).
16.
L.
Vasconcelos
,
A.
Brito
,
C.
Carmo
and
E.
Oliveira
,
Genet. Mol. Research
15
,
gmr15049082
(
2016
).
17.
G.
Zhihong
,
Z.
Jinwen
and
W.
Di
,
Scientia Agricultura Sinica
41
,
494
501
(
2008
).
18.
D.
Beyene
,
Y.
Baguma
,
S.
Mukasa
,
C.
Sun
and
C.
Jansson
,
Afr. Crop Sci. Journal
18
,
1
8
(
2010
).
19.
Y.
Nakamura
,
Plant Science
121
,
1
18
(
1996
).
20.
P.
Figueiredo
,
M.
Moraes-Dallaqua
,
S.
Bicudo
and
F.
Tanamati
,
Afr. Crop Sci. Journal
8
,
5712
5
(
2013
).
21.
P.
De Souza
,
L. N.
Massenburg
,
D.
Jaiswal
,
S.
Cheng
,
R.
Shekar
and
S. P.
Long
,
New Phytologist
213
,
50
65
(
2017
).
22.
S. B.
Lowe
and
J. D.
Mahon
and
L. A.
Hunt
,
Can. J. Botany
60
,
3040
8
(
1982
).
23.
J.
Huang
,
H. A.
Schols
,
J. J. G.
van Soest
,
Z.
Jin
,
E.
Sulmann
and
A. G. J.
Voragen
,
Food Chemistry
101
,
1338
45
(
2007
).
24.
E.
Ekanayake
,
S.
Navaratne
,
I.
Wickramasinghe
and
A.
Abeysundara
,
Nutri Food Sci Int Journal
6
,
1
5
(
2018
).
25.
M. C. R.
Cordeiro
,
M. S.
Silva
,
E. C. d.
Oliveira-Filho
,
Z. d. J. G. d.
Miranda
,
F. d. G.
Aquino
,
R. d. R.
Fragoso
, et al., editors. Optimization of A Method of Total RNA Extraction from Brazilian Native Plants Rich in Polyphenols and Polysaccharides.
IX Simpósio Nacional Cerrado II Simpósio Internacional Savanas Tropicas “Desafios e estratégias para o equilíbrio entre sociedade, agronegócio e recursos naturais”
; 2008 12-17 Oktober 2008;
Brasilia
,
Brazil
.
26.
M. K.
Udvardi
,
T.
Czechowski
and
W.-R.
Scheible
,
The Plant cell
20
,
1736
7
(
2008
).
27.
N.
Morante
,
H.
Ceballos
,
T.
Sánchez
,
A.
Rolland-Sabaté
,
F.
Calle
,
C.
Hershey
, et al.,
Food Hydrocolloids
56
,
383
95
(
2016
).
28.
R. F.
Tester
,
J.
Karkalas
and
X.
Qi
, J.
Cereal Science
39
,
151
65
(
2004
).
29.
E.
Botticella
,
F.
Sestili
,
F.
Sparla
,
S.
Moscatello
,
L.
Marri
,
J. A.
Cuesta-Seijo
, et al.,
Plant Biotechnol. Journal
16
,
1723
34
(
2018
).
30.
V.
Anggraini
,
E.
Sudarmonowati
,
N. S.
Hartati
,
L.
Suurs
and
R. G. F.
Visser
,
Starch - Stärke
61
,
472
81
(
2009
).
31.
M. K.
Mtunguja
,
H. S.
Laswai
,
E.
Kanju
,
J.
Ndunguru
and
Y. C.
Muzanila
,
Food Sci. Nutrition
4
,
791
801
(
2016
).
32.
L. E.
Mejía-Agüero
,
F.
Galeno
,
O.
Hernández-Hernández
,
J.
Matehus
and
J.
Tovar
,
J. Sci. Food Agriculture
92
,
673
8
(
2012
).
33.
S. M.
Chisenga
,
T. S.
Workneh
,
G.
Bultosa
and
B. A.
Alimi
,
J. Food Sci. Technology
56
,
2799
813
(
2019
).
34.
P. H.
Richardson
,
R.
Jeffcoat
and
Y.-C.
Shi
,
MRS Bulletin
25
,
20
4
(
2000
).
35.
M.
Hu
,
W.
Hu
,
Z.
Xia
,
X.
Zhou
and
W.
Wang
,
Front. Plant Science
7
, (
2016
).
36.
C. K.
Shewmaker
,
J. A.
Sheehy
,
M.
Daley
,
S.
Colburn
and
D. Y.
Ke
,
Plant Journal
20
,
401
12X
(
1999
).
37.
S.
Suhandono
,
A.
Apriyanto
and
N.
Ihsani
,
PLoS ONE
9
,
e84692
(
2014
).
38.
J.
Pei
,
H.
Wang
,
Z.
Xia
,
C.
Liu
,
X.
Chen
,
P.
Ma
, et al.,
Mol. Cel. Biochemistry
406
,
273
84
(
2015
).
39.
N.
Srisawad
,
W.
Worrapitirungsi
,
S.
Sraphet
,
O.
Boonseng
,
D. R.
Smith
and
K.
Triwitayakorn
,
J. Crop Improvement
32
,
493
510
(
2018
).
40.
B.
Pfister
,
S. C.
Zeeman
,
Cell. Mol. Life Sciences
73
,
2781
807
(
2016
).
41.
W.
Zhou
,
S.
He
,
M.
Naconsie
,
Q.
Ma
,
S. C.
Zeeman
,
W.
Gruissem
, et al.,
Sci. Reports
7
,
9863
(
2017
).
This content is only available via PDF.
You do not currently have access to this content.