Indole-3-acetic acid (IAA) producing bacteria is a group of bacteria that capable of improving crop's root competence regarding getting nutrients, ions, and water and initiate good conditions to support crops growth in Imperata grasslands. This study aims to screen and identify IAA-producing bacteria from Cibinong, Katingan, and East Nusa Tenggara, Indonesia. Sixty-eight of IAA-producing bacteria obtained from the previous study are identified based on the 16S rRNA gene and qualitatively and quantitatively screened after a year of preservation in 10% glycerol at -80°C. The finding of this study highlighted that there are 14 genera of IAA-producing bacteria obtained Rhizobium, Pseudomonas, Klebsiella, Pantoea, Paraburkholderia, Acinetobacter, Enterobacter, and Serratia (Phylum Proteobacteria); Bacillus (Phylum Firmicutes); Microbacterium, Arthrobacter and Leifsonia (Phylum Actinobacteria); and Chryseobacterium and Pedobacter (Phylum Bacteroidetes). However, only seven genera (39 isolates) are quantitatively measured for IAA production until 72 h of incubation. The range of IAA production in several genera until 72 h of incubation for Rhizobium, Chryseobacterium, Pseudomonas, Bacillus, Klebsiella, Enterobacter and Serratia genus are 5.55-11.97 mg ml−1, 16.83 mg ml−1, 0.88-21.67 mg ml-1, 1.94-6.16 mg ml−1, 9.42-179.57 mg ml−1, 3.31-48.89 mg ml-1, and 18.59 mg ml−1 respectively. This preliminary study showed that IAA production by bacteria was still increasing until 72 h of incubation. Strain KAT-229 was identified as Klebsiella sp. showed the highest level of IAA production (179.57 mg ml−1) than other isolates when strains on the stationary growth phase in the presence of L-Trp. This study clearly shows that the isolates could be potentially used for revegetating of degraded land of Imperata grasslands. Further studies are required to achieve incubation time for the highest IAA production.

1.
R. M.
Brook
,
Tropical Pest Management
35
,
12
25
(
1989
).
2.
D. P.
Garrity
 et al,
Agroforestry Systems
36
,
3
29
(
1997
).
3.
D.
Santoso
 et al,
Agroforestry Systems
36
,
181
202
(
1997
).
4.
G. E.
MacDonald
,
Critical Reviews in Plant Sciences
23
,
367
380
(
2004
).
5.
H.
Bagnall-Oakeley
 et al,
Agroforestry Systems
36
,
83
104
(
1997
).
6.
K. G.
Macdicken
 et al,
Agroforestry Systems
36
,
131
149
(
1997
).
7.
D. C.
Holly
and
G. N.
Ervin
,
Weed Biology and Management
6
,
120
123
(
2006
).
8.
A. L.
Cerdeira
 et al,
Weed Science
60
,
212
218
(
2012
).
9.
D.
Bhardwaj
 et al,
Microbial Cell Factories
13
,
1
10
(
2014
).
10.
K.
Mohammadi
and
Y.
Sohrabi
,
Journal of Agricultural and Biological Science
7
,
307
316
(
2012
).
11.
J.
Vacheron
 et al,
Frontiers in Plant Science
4
,
1
19
(
2013
).
12.
M.
Sauer
 et al,
Journal of Experimental Botany
64
,
2565
2577
(
2013
).
14.
C. L.
Patten
and
B. R.
Glick
,
Canadian Journal of Microbiology
42
,
207
220
(
1996
).
15.
S.
Spaepen
 et al,
FEMS Microbiology Reviews
31
,
425
448
(
2007
).
16.
E. R.
Radwanski
and
R. L.
Last
,
American Society of plant physiologists
7
,
921
934
(
1995
).
17.
M.
Chaiharn
and
S.
Lumyong
,
Current Microbiology
62
,
173
181
(
2011
).
18.
V.
Gravel
 et al,
Soil Biology and Biochemistry
39
,
1968
1977
(
2007
).
19.
J. L.
Celenza
 et al,
Genes and Development
9
,
2131
2142
(
1995
).
20.
B. Y. K. V.
Thimann
,
Biological Reviews
14
,
314
337
(
1938
).
21.
D. I.
Kusumawati
 et al,
Proceedings The SATREPS Conference
1
,
125
133
(
2017
).
22.
S. A.
Gordon
and
R. P.
Weber
,
Plant Physiology
26
,
192
195
(
1951
).
23.
C.
Kilger
and
K.
Schmid
,
Trends in Genetics
10
,
149
(
1994
).
24.
P.
Lisdiyanti
 et al,
International Journal of Environment and Bioenergy
3
,
145
153
(
2012
).
25.
T.
Hall
 et al,
GERF Bulletin of Biosciences
2
,
60
61
(
2011
).
26.
S.
Yoon
 et al,
Int J Syst Evol Microbiol
67
,
1613
1617
(
2017
).
27.
O. S.
Kim
 et al,
International Journal of Systematic and Evolutionary Microbiology
62
,
716
721
(
2012
).
28.
S.
Kumar
 et al,
Molecular Evolutionary Genetics Analysis
33
,
1870
1874
(
2016
).
29.
S.
Gang
 et al,
Bio-Protocol
9
,
1
9
(
2019
).
30.
S.
Widawati
and
S.
Suliasih
,
Makara Journal of Science
23
,
28
38
(
2019
).
31.
B.
Mohite
,
Journal of Soil Science and Plant Nutrition
13
,
638
649
(
2013
).
32.
W. L.
Cody
 et al,
J. Microbiol. Methods
75
,
135
138
(
2008
).
33.
D.
Rojas-tapias
 et al,
Univ. Sci.
18
,
129
139
(
2013
).
34.
W. J.
Sul
 et al,
Soil Biology and Biochemistry
65
,
33
38
(
2013
).
35.
Z.
Wei
 et al,
Plos One
12
,
1
22
(
2017
).
36.
C. M.
Prince
 et al,
Weed Technology
32
,
1
6
(
2018
).
37.
J. W.
Wilcut
 et al,
Weed Science
36
,
577
582
(
1988
).
38.
A. K. A.
Suleiman
 et al,
Systematic and Applied Microbiology
36
,
137
144
(
2013
).
39.
P. H.
Rampelotto
 et al,
Microb. Ecol.
66
,
593
607
(
2013
).
40.
S.
Qin
 et al,
Frontiers in Microbiology
7
,
1
2
(
2016
).
41.
S. D.
Eisenlord
and
D. R.
Zak
,
Soil Science Society of America Journal
74
,
1157
1166
(
2010
).
42.
43.
C.
Datta
and
P. S.
Basu
,
Microbiological research
155
,
123
127
(
2000
).
44.
E.
Khare
and
N.
Kumar
,
Curr. Microbiol.
61
,
64
68
(
2010
).
45.
Y.
Liu
 et al,
J. Gen. Appl. Microbiol.
59
,
59
65
(
2013
).
46.
P. K.
Ghosh
 et al,
Biocatalysis and Agricultural Biotechnology
4
,
296
303
(
2015
).
47.
J.
Park
 et al,
Indian J. Microbiol.
55
,
207
212
(
2015
).
48.
K. A.
Devi
 et al,
HAYATI Journal of Biosciences
23
,
173
180
(
2016
).
49.
K. K.
Bhise
 et al,
3 Biotech
7
,
1
13
(
2017
).
50.
P.
Nutaratat
 et al,
3 Biotech
7
,
1
15
(
2017
).
51.
Suliasih
and
S.
Widawati
,
IOP Conference Series: Earth and Environmental Science
572
,
1
11
(
2020
).
52.
R.
Donoso
 et al,
Applied and Environmental Microbiolgy
83
,
1
20
(
2017
).
53.
A. L.
Khan
 et al,
Electronic Journal of Biotechnology
21
,
58
64
(
2016
).
54.
D. P.
Sachdev
 et al,
Indian Journal of Experimental Biology
47
,
993
1000
(
2009
).
55.
H.
El-Khawas
and
K.
Adachi
,
Biology and Fertility of Soils
28
,
377
381
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.