The scope of this research aims to highlight the analysis of the virtualization prerequisites in terms of the non-destructive testing training. The peculiarities of radiation control (RC), which significantly affect the organization of practical classes and the profitability of personnel training, are given. The main requirements for specialists in the course of practical training are listed. Methods of processing and visualizing information about the structure of dense three-dimensional bodies are considered and a simplified task-specified alternative is proposed. The results of the research underline the principle of image construction and processing through the use of digital twins of testing samples. This allows the user to get an image that is similar to shooting results of real metal samples in terms of training purposes. In order to deliver a more effective methodology, the main physical principles are taken into account for digital models of radiographs.

1.
Powell
,
W.
,
Garner
,
T.
,
Shapiro
,
S.
and
Paul
,
B.
(
2017
).
Virtual Reality In Entertainment: The State Of The Industry
.
British Academy of Film and Television Arts
,
47
.
2.
Clua
,
E.
,
Porcino
,
T.
,
Trevisan
,
D.
,
Cardoso
,
J.
,
Lisboa
,
T.
,
Peres
,
V.
,
Ferrari
,
V.
,
Marques
,
B.
,
Barbosa
,
L.
and
Oliveira
,
E.
(
2021
).
Workshop: Challenges for XR in Digital Entertainment
.
International Conference on Entertainment Computing
,
489
498
.
3.
Cruz-Neira
,
C.
,
Fernandez
,
M.
and
Portales
,
C.
(
2018
).
Virtual reality and games
.
Multimodal Technol. Interact.
,
2
(
1
),
8
.
4.
Kaminska
,
D.
,
Sapinski
,
T.
,
Wiak
,
S.
,
Tikk
,
T.
,
Haamer
,
R. E.
,
Avots
,
E.
,
Helmi
,
A.
,
Ozcinar
,
C.
and
Anbarjafari
,
G.
(
2019
).
Virtual reality and its applications in education: Survey
.
Information
,
10
(
10
),
318
.
5.
Hu-Au
,
E.
and
Lee
,
J.
(
2018). Virtual reality in education: a tool for learning in the experience age
.
International Journal of Innovation in Education
,
4
(
4
),
215
226
.
6.
Thompson
,
M. M.
,
Wang
,
A.
,
Roy
,
D.
and
Klopfer
,
E.
(
2018). Authenticity, Interactivity, and Collaboration in VR learning games
.
Frontiers in Robotics and AI
,
5
,
133
.
7.
Zhang
,
Q.
,
Wang
,
K.
and
Zhou
,
S.
(
2020
).
Application and Practice of VR Virtual Education Platform in Improving the Quality and Ability of College Students
.
IEEE Access
,
8
,
162830
162837
.
8.
Chernov
,
A.Ye
. (
2010
).
Development of a principle of visibility and its state in the light of modern computer technologies
.
Science and School
,
(1
),
55
57
. (in Russian).
9.
Luo
,
H.
,
Li
,
G.
,
Feng
,
Q.
,
Yang
,
Y.
,
Zuo
,
M.
Virtual reality in K-12 and higher education: A systematic review of the literature from 2000 to 2019
.
Journal of Computer Assisted Learning
,
37
(
3
),
887
901
.
10.
Allcoat
,
D.
and
von Muhlenen
,
A.
(
2018
).
Learning in virtual reality: Effects on performance, emotion and engagement
.
Research in Learning Technology
,
26
,
2140
.
11.
Alhalabi
,
W. S.
(
2016
).
Virtual reality systems enhance students’ achievements in engineering education
.
Behaviour & Information Technology
,
35
,
919
925
.
12.
Akbulut
,
A.
,
Catal
,
C.
and
Yildiz
,
B.
(
2018
).
On the effectiveness of virtual reality in the education of software engineering
.
Computer Applications in Engineering Education
,
26
,
918
927
.
13.
Zhang
,
G.
(
2019
).
Virtual Simulation for History Education
.
IEEE Conference on Virtual Reality and 3D User Interfaces (VR)
,
1646
1651
.
14.
Black
,
E. R.
(
2017
).
Learning then and there: an exploration of virtual reality in k-12 history education
. (Unpublished doctoral thesis),
The University of Texas: Texas
.
15.
Klick
,
A.
,
Kim
,
S. E.
and
Kim
,
M. J.
(
2017
).
Using Virtual Reality (VR) for Education in Nanoscience
.
Microscopy and Microanalysis
,
23
(
S1
),
2302
2303
.
16.
Loza
,
A.A.
,
Egorova
,
E.N.
(
2020
).
Trends and prospects of VR tourism development during the crisis and pandemic 2020
.
Colloquium-journal
,
23
(
75
).
17.
Makled
,
E.
,
Yassien
,
A.
,
Elagroudy
,
P.
,
Magdy
,
M.
,
Abdennadher
,
S.
and
Hamdi
,
N.
(
2019
, June).
PathoGenius VR: VR medical training
.
In Proceedings of the 8th ACM International Symposium on Pervasive Displays
,
1
2
.
18.
Kovshov
,
E. E.
,
Kuvshinnikov
,
V. S.
,
Kazakov
,
D. F.
(
2021
).
Virtual reality usage in the radiography simulator development for non-destructive testing personnel training
.
Kontrol’. Diagnostika
,
24
(
7
),
34
40
. (in Russian).
19.
Shi
,
S.
,
Wang
,
X.
,
Li
,
H.
(
2019
).
PointRCNN: 3d object proposal generation and detection from point cloud
.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
770
779
.
20.
Zhong
,
X.
,
Amrehn
,
M.
,
Ravikumar
,
N.
,
Chen
,
S.
,
Strobel
,
N.
,
Birkhold
,
A.
and
Maier
,
A.
(
2018
).
Action learning for 3D point cloud based organ segmentation
. arXiv preprint arXiv:1806.05724.
21.
Van De Looverbosch
,
T.
,
Bhuiyan
,
M. H. R.
,
Verboven
,
P.
,
Dierick
,
M.
,
Van Loo
,
D.
,
De Beenbouwer
,
J.
and
Nicolaï
,
B.
(
2020
).
Nondestructive internal quality inspection of pear fruit by X-ray CT using machine learning
.
Food Control
,
113
,
107170
.
22.
Saiz
,
F. A.
and
Barandiaran
,
I.
(
2020
).
COVID-19 Detection in Chest X-ray Images using a Deep Learning Approach
.
Int. J. Interact. Multim. Artif. Intell.
,
6
(
2
),
1
4
.
23.
Pereira
,
R. M.
,
Bertolini
,
D.
,
Teixeira
,
L. O.
,
Silla
Jr
, C. N. and
Costa
,
Y. M.
(
2020
).
COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios
.
Computer Methods and Programs in Biomedicine,
194
,
105532
.
24.
Islam
,
R.
,
Uddin
,
S.
,
Sakib
,
J. M.
,
Islam
,
M. S.
and
Ahmed
,
T.
(
2021
).
An Overview of Image Processing Techniques for Detecting COVID-19 and Other Infectious Diseases
.
AIUB Journal of Science and Engineering (AJSE)
,
20
(
1
),
77
86
.
25.
Boreskov
,
A.V.
(
2006
). Shader development and debugging.
St. Petersburg
:
BHV-Petersburg
,
23
26
. (in Russian)
26.
Radiography in Modern Industry. 4th ed.
Rochester – New-York
:
Eastmen Kodak Company
,
1980
.
212
.
This content is only available via PDF.
You do not currently have access to this content.