Electrical Impedance Tomography (EIT) is a non-invasive measurement technique to obtain reconstructed images based on impedance properties. The use of EIT in the medical field has been widely applied including in the detection of brain abnormalities. In this study, EIT was developed for head-brain imaging in which particularly to detect abnormalities in the brain and it was simulated with Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (EIDORS). There are three processes carried out in the reconstruction of the head-brain image. These processes are namely determining the Finite Element Method (FEM) model and creating strange objects or anomaly inclusion, applying the IRLS algorithm to obtain an inversion solution, and segmenting the anomaly inclusion with k-means clustering. The results of EIT image reconstruction and evaluation with Structural Similarity Indices (SSIM) and Image Correlation Coefficient (ICC) show that the proposed method is able to obtain head-brain images with promising results.

1.
S. R.
Atefi
,
F.
Seoane
, and
K.
Lindecrantz
, in
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
2012
).
2.
R. H.
Bayford
,
Annual Review of Biomedical Engineering
8
,
63
(
2006
).
3.
N. M.
Zain
and
K. K.
Chelliah
,
Asian Pacific Journal of Cancer Prevention
15
,
1327
(
2014
).
4.
M. S.
Campisi
,
C.
Barbre
,
A.
Chola
,
G.
Cunningham
, and
J.
Viventi
,
IEEE
1131
(
2014
).
5.
G. Y.
Jang
,
G.
Ayoub
,
Y. E.
Kim
,
T. I.
Oh
,
C. R.
Chung
, and
G. Y.
Suh
,
BioMedical Engineering OnLine
1
(
2019
).
6.
C.
Putensen
,
B.
Hentze
,
S.
Muenster
, and
T.
Muders
,
Journal of Clinical Medicine
8
, (
2019
).
7.
Y.
Nakae
,
M.
Kagaya
,
R.
Takagi
,
Y.
Matsutani
,
H.
Horibe
, and
T.
Kondo
,
Journal of Gastroenterology
35
,
593
(
2000
).
8.
C. S.
Chaw
,
E.
Yazaki
, and
D. F.
Evans
,
International Journal of Pharmaceutics
227
,
167
(
2001
).
9.
J.
Ma
,
C.
Xu
,
M.
Dai
,
F.
You
,
X.
Shi
,
X.
Dong
, and
F.
Fu
,
Scientific World Journal 2014
, (
2014
).
10.
F.
Fu
,
B.
Li
,
M.
Dai
,
S.-J.
Hu
,
X.
Li
,
C.-H.
Xu
,
B.
Wang
,
B.
Yang
,
M.-X.
Tang
,
X.-Z.
Dong
,
Z.
Fei
, and
X.-T.
Shi
,
PLoS ONE
9
,
e113202
(
2014
).
11.
M.
Dai
,
B.
Li
,
S.
Hu
,
C.
Xu
,
B.
Yang
,
J.
Li
,
F.
Fu
,
Z.
Fei
, and
X.
Dong
,
PLoS ONE
8
,
1
(
2013
).
12.
D. S.
Holder
, 2008
World Automation Congress, WAC 2008
5
,
87
(
2008
).
13.
H.
Li
,
R.
Chen
,
C.
Xu
,
B.
Liu
,
X.
Dong
, and
F.
Fu
,
Scientific Reports
1
(
2018
).
14.
A.
Nissinen
,
J. P.
Kaipio
,
M.
Vauhkonen
, and
V.
Kolehmainen
,
Physiological Measurement
1
(
2015
).
15.
A.
Tizzard
,
L.
Horesh
,
R. J.
Yerworth
,
D. S.
Holder
, and
R. H.
Bayford
,
Physiological Measurement
26
, (
2005
).
16.
C.
Chen
,
L.
He
,
H.
Li
, and
J.
Huang
,
Medical Image Analysis
49
,
141
(
2018
).
17.
A.
Adler
and
W. R. B.
Lionheart
,
Physiological Measurement
27
, (
2006
).
18.
Z.
Wang
,
A. C.
Bovik
,
H. R.
Sheikh
, and
E. P.
Simoncelli
,
IEEE TRANSACTIONS ON IMAGE PROCESSING
13
,
600
(
2004
).
19.
A.
Kaur
,
L.
Kaur
, and
S.
Gupta
,
International Journal of Computer Applications
59
,
32
(
2012
).
This content is only available via PDF.
You do not currently have access to this content.