Sugarcane plantations in Indonesia are still managed in a labor-intensive manner, especially plantation-owned by farmers. Labor intensive means that every stage of work in sugarcane plantation management still uses manpower. One of the jobs in sugarcane plantations that requires a lot of labor is sugar cane harvesting. Trend changing in the workforce gender would affect the quantity and quality of jobs, which is determined by the workforce's capacity and the workload of the work performed. The result of this research was a sugarcane agricultural calculator that made it simple for farmers to measure manpower and transportation requirements in estimating harvest costs. Manpower and transportation of harvested sugarcane commodities were estimated through the workload approach, namely, crop production and manpower's ability to carry a load. These two components helped sugarcane farmers to determine manpower and transportation during the harvest. The final yield produced by the projected harvest labor cost would be known immediately.

1.
D.
Perkebunan
,
Statistik Perkebunan Indonesia Komoditas Tebu 2018-2019
(
Jakarta
:
Direktorat Jenderal Perkebunan Kementerian Pertanian
,
2018
)
2.
N. M. G.
Ajitia
,
A.
Prasetya
,
Efektivitas Manpower Planning Dengan Menggunakan Metode Analisis Beban Kerja (Work Load Analysis) Berdasarkan Pendekatan Full TIME Equivalent (Studi Pada Divisi Pengembangan Karir, Organisasi, dan Kompetensi di PT Pupuk Kalimantan Timur Tbk. Bontang, Ka J. Adm. Bisnis
42
27
35
(
2017
)
3.
Jamilatuzzahro
,
R. E. Caraka
,
R.
Herliansyah
,
S.
Asmawati
,
D. M.
Sari
, and
B.
Pardamean
,
Generalized Space Time Autoregressive of Chili Prices
Proceedings of 2018 International Conference on Information Management and Technology, ICIMTech 2018
(
2018
)
4.
Harsawardana
,
R. Rahutomo
,
B.
Mahesworo
,
T. W.
Cenggoro
,
A.
Budiarto
,
T.
Suparyanto
,
D. B. Surya
Atmaja
,
B.
Samoedro
and
B.
Pardamean
,
AI-Based Ripeness Grading for Oil Palm Fresh Fruit Bunch in Smart Crane Grabber IOP Conference Series: Earth and Environmental Science
1
8
(
2020
)
5.
R. E.
Caraka
,
B. D.
Supatmanto
,
M.
Tahmid
,
J.
Soebagyo
,
M. A.
Mauludin
,
A.
Iskandar
, and
B.
Pardamean
,
Rainfall forecasting using PSPline and rice production with ocean-atmosphere interaction IOP Conference Series: Earth and Environmental Science
1
7
(
2018
)
6.
D. P.
Putra
,
M. P.
Bimantio
,
A. A.
Sahfitra
,
T.
Suparyanto
, and
B.
Pardamean
,
Simulation of Availability and Loss of Nutrient Elements in Land with Android-Based Fertilizing Applications 2020 International Conference on Information Management and Technology (ICIMTech) (IEEE)
312
317
(
2020
)
7.
J. W.
Baurley
,
A. S.
Perbangsa
,
A.
Subagyo
, and
B.
Pardamean
,
A web application and database for agriculture genetic diversity and association studies Int. J. Bio-Science Bio-Technology
5
33
42
(
2013
)
8.
J. W.
Baurley
,
A.
Budiarto
,
M. F.
Kacamarga
and
B.
Pardamean
,
A web portal for rice crop improvements International Journal of Web Portals
10
15
31
(
2018
)
9.
T. W.
Cenggoro
,
A.
Budiarto
,
R.
Rahutomo
, and
B.
Pardamean
,
Information System Design for Deep Learning Based Plant Counting Automation 2018 Indonesian Association for Pattern Recognition International Conference (INAPR)
329
32
(
2018
)
10.
R.
Rahutomo
,
A. S.
Perbangsa
,
Y.
Lie
,
T. W.
Cenggoro
, and
B.
Pardamean
,
Artificial Intelligence Model Implementation in Web-Based Application for Pineapple Object Counting Proceedings of 2019 International Conference on Information Management and Technology (ICIMTech 2019)
525
530
(
2019
)
11.
D. P.
Putra
, and
E.
Firmansyah
,
Program Pakar untuk Defisiensi Kelapa Sawit: Expertise Program For Oil Palm Deficiency AGROISTA J. Agroteknologi
3
11
17
(
2019
)
12.
Anindito
,
B. Pardamean
,
R.
Christian
, and
B. S.
Abbas
,
Expert-system based medical stroke prevention J. Comput. Sci.
9
1099
1105
(
2013
)
13.
K.
Gunawan
, and
B.
Pardamean
,
School information systems design for mobile phones J. Comput. Sci.
9
1140
1145
(
2013
)
14.
R. N. P.
Atmojo
,
B.
Pardamean
,
B. S.
Abbas
,
A. D.
Cahyani
,
I. D.
Manulang
,
Fuzzy simple additive weighting based, decision support system application for alternative confusion reduction strategy in smartphone purchases Am. J. Appl. Sci.
11
666
680
(
2014
)
15.
A.
Budiarto
,
B.
Pardamean
, and
R. E.
Caraka
,
Computer vision-based visitor study as a decision support system for museum 2017 International Conference on Innovative and Creative Information Technology (ICITech)
1
6
(
2017
)
16.
H.
Soeparno
,
A. S.
Perbangsa
, and
B.
Pardamean
,
Best Practices of Agricultural Information System in the Context of Knowledge and Innovation Proceedings of 2018 International Conference on Information Management and Technology, ICIMTech 2018
489
494
(
2018
)
17.
H.
Prabowo
,
T. W.
Cenggoro
,
A.
Budiarto
,
A. S.
Perbangsa
,
H. H.
Muljo
, and
B.
Pardamean
,
Utilizing Mobile-based Deep Learning Model for Managing Video in Knowledge Management System Int. J. Interact. Mob. Technol.
12
62
73
(
2018
)
18.
F. R.
Lumbanraja
,
B.
Mahesworo
,
T. W.
Cenggoro
,
A.
Budiarto
, and
B.
Pardamean
,
An evaluation of deep neural network performance on limited protein phosphorylation site prediction data Procedia Comput. Sci.
157
25
30
(
2019
)
19.
R.
Rahutomo
,
A. S.
Perbangsa
,
H.
Soeparno
, and
B.
Pardamean
,
Embedding model design for producing book recommendation 2019 International conference on information management and technology (ICIMTech)
1
537
541
(
2019
)
20.
B.
Pardamean
,
H. H.
Muljo
,
T. W.
Cenggoro
,
B. J.
Chandra
and
R.
Rahutomo
,
Using transfer learning for smart building management system J. Big Data
6
1
12
(
2019
)
21.
G.
Dines
,
S.
McRae
,
C..
Henderson
,
Sugarcane harvest and transport management: A proven whole-of-systems approach that delivers least cost and maximum productivity Proceedings Australian Society of Sugar Cane Technologists, 34th Conference
(
2012
)
22.
A.
Villa-Henriksen
,
N.
Skou-Nielsen
,
C. A. G.
Sørensen
,
O.
Green
,
G. T. C.
Edwards
,
Internet-based harvest fleet logistic optimisation Proceedings of the European Agricultural Conference
8
12
(
2018
)
23.
W. W.
Royce
,
Managing the development of large software systems: Concepts and techniques Proceedings of the 9th international conference on Software Engineering
328
38
(
1987
)
24.
S.
Shylesh
,
A Study of Software Development Life Cycle Process Models Retrieved from
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2988291 (
2017
)
25.
B. W.
Niebel
,
Motion and Time Study
(
Ninth
eds.) (
New York
:
McGrawhill
,
1993
)
26.
H. B.
Fransiskus
,
Analisis Hubungan Beban Kerja Dengan Stres Kerja Perawat Di Tiap Ruang Rawat Inap Rumah Sakit Islam Siti Rahmah 2016
(
Jakarta
:
Universitas Andalas
,
2016
)
This content is only available via PDF.
You do not currently have access to this content.