The quantity of data created in today’s society is large and increasing. Temporal networks are frequently connected with data and can help to deepen data analysis and show structural and historic alteration. Several network issues are based on relationships that require time, for instance modeling the influx of information over a distributed network, examining the reachability features of an airline time schedule, or analyzing the propagation of a disease through a population. In a temporal network, the graph represents the contacts that occur between edges at a given time. Large databases of items and their relationships are represented and analyzed using networks. Real-world networks include the temporal component: for example, interactions between objects have the timestamp and the duration. Temporal networks are growingly being utilized to simulate a wide range of systems that vary over time, such as human interaction structures that are subject to dynamic processes like epidemics. An essential feature of real-world networks that are represented within the temporal and spatial framework by sampling them. This review looks at a variety of disciplines where temporal graphs are used.

1.
N.
Masuda
and
R.
Lambiotte
, “
A Guide to Temporal Networks,
” vol.
06
, Oct.
2020
.
2.
R.
Dondi
and
M. M.
Hosseinzadeh
, “
Dense Sub-networks Discovery in Temporal Networks,
SN Comput. Sci.
, vol.
2
, no.
3
, May
2021
.
3.
S.
Fortunato
, “
Community detection in graphs,
Physics Reports
, vol.
486
, no.
3–5
. North-Holland, pp.
75
174
, Feb.
2010
.
4.
L.
Kovanen
,
M.
Karsai
,
K.
Kaski
,
J.
Kertész
, and
J.
Saramäki
, “
Temporal motifs in time-dependent networks,
J. Stat. Mech. Theory Exp.
, vol.
2011
, no.
11
, p.
P11005
, Nov.
2011
.
5.
N.
Duhan
,
A. K.
Sharma
, and
K. K.
Bhatia
, “
Page ranking algorithms: A survey,
” in
2009 IEEE International Advance Computing Conference, IACC 2009
,
2009
, pp.
1530
1537
.
6.
D.
Kempe
,
J.
Kleinberg
, and
A.
Kumar
, “
Connectivity and inference problems for temporal networks,
J. Comput. Syst. Sci.
, vol.
64
, no.
4
, pp.
820
842
, Jun.
2002
.
7.
L. E. C.
Rocha
,
N.
Masuda
, and
P.
Holme
, “
Sampling of temporal networks: Methods and biases,
Phys. Rev. E
, vol.
96
, no.
5
, p.
52302
, Nov.
2017
.
8.
P.
Holme
, “
Modern temporal network theory: a colloquium,
Eur. Phys. J. B
, vol.
88
, no.
9
,
2015
.
9.
M. A.
Rodríguez-Flores
and
F.
Papadopoulos
, “
Hyperbolic mapping of human proximity networks,
Sci. Rep.
, vol.
10
, no.
1
, pp.
1
15
,
2020
.
10.
C.
Scholz
,
M.
Atzmueller
,
M.
Kibanov
, and
G.
Stumme
, “
Predictability of evolving contacts and triadic closure in human face-to-face proximity networks,
Soc. Netw. Anal. Min.
, vol.
4
, no.
1
, pp.
1
17
, Jan.
2014
.
11.
Z.
Qin
,
Y.
Xian
, and
F.
Zhang
, “
MIMU: Mobile WiFi Usage Inference by Mining Diverse User Behaviors; MIMU: Mobile WiFi Usage Inference by Mining Diverse User Behaviors,
2020
.
12.
T.
Elmer
,
K.
Chaitanya
,
P.
Purwar
, and
C.
Stadtfeld
, “
The validity of RFID badges measuring face-to-face interactions,
arXiv, pp.
2120
2138
,
2018
.
13.
Z.
Ebrahimpour
,
W.
Wan
,
J. L. V.
García
,
O.
Cervantes
, and
L.
Hou
, “
Analyzing Social-Geographic Human Mobility Patterns Using Large-Scale Social Media Data,
ISPRS Int. J. Geo-Information 2020
, Vol.
9
, Page
125
, vol. 9, no.
2
, p. 125, Feb.
2020
.
14.
P.
Sapiezynski
,
A.
Stopczynski
,
D. K.
Wind
,
J.
Leskovec
, and
S.
Lehmann
, “
Inferring Person-to-person Proximity Using WiFi Signals,
Proc. ACM Interactive, Mobile, Wearable Ubiquitous Technol.
, vol.
1
, no.
2
, pp.
1
20
,
2017
.
15.
Inferring friendship network structure by using mobile phone data,
” vol.
106
, no.
36
. pp.
15274
15278
.
16.
L.
Isella
,
J.
Stehlé
,
A.
Barrat
,
C.
Cattuto
,
J. F.
Pinton
, and
W.
Van den Broeck
, “
What’s in a crowd? Analysis of face-to-face behavioral networks,
J. Theor. Biol.
, vol.
271
, no.
1
, pp.
166
180
, Feb.
2011
.
17.
V.
Sekara
,
A.
Stopczynski
, and
S.
Lehmann
, “
Fundamental structures of dynamic social networks,
Proc. Natl. Acad. Sci. U. S. A.
, vol.
113
, no.
36
, pp.
9977
9982
, Sep.
2016
.
18.
V.
Mohan
et al, “
Using global positioning system technology and Google My Maps in follow-up studies—An experience from influenza surveillance study, Chennai, India,
Spat. Spatiotemporal. Epidemiol.
, vol.
32
, p.
100321
,
2020
.
19.
S. N.
Zenk
,
S. A.
Matthews
,
A. N.
Kraft
, and
K. K.
Jones
, “
How many days of global positioning system (GPS) monitoring do you need to measure activity space environments in health research?,
Heal. Place
, vol.
51
, pp.
52
60
, May
2018
.
20.
D. S. S.
Rejeki
,
A.
Fuad
,
B. S.
Widartono
,
E. E. H.
Murhandarwati
, and
H.
Kusnanto
, “
Spatiotemporal patterns of malaria at cross-boundaries area in Menoreh Hills, Java, Indonesia,
Malar. J.
, vol.
18
, no.
1
, p.
80
, Mar.
2019
.
21.
J. R.
Clough
,
J.
Gollings
,
T. V.
Loach
, and
T. S.
Evans
, “
Transitive reduction of citation networks,
J. Complex Networks
, vol.
3
, no.
2
, pp.
189
203
, Jun.
2015
.
22.
G.
Muzio
,
L.
O’Bray
, and
K.
Borgwardt
, “
Biological network analysis with deep learning,
Brief. Bioinform.
, vol.
2020
, no.
0
, pp.
1
17
, Nov.
2020
.
23.
P.
Wang
,
J.
, and
X.
Yu
, “
Identification of Important Nodes in Directed Biological Networks: A Network Motif Approach,
PLoS One
, vol.
9
, no.
8
, p.
e106132
, Aug.
2014
.
24.
X.
Liu
et al, “
Computational methods for identifying the critical nodes in biological networks,
Brief. Bioinform.
, vol.
21
, no.
2
, pp.
486
497
, Mar.
2020
.
25.
S.
Lam
et al, “
Addressing the heterogeneity in liver diseases using biological networks,
Brief. Bioinform.
, vol.
2020
, no.
00
, pp.
1
16
, Mar.
2020
.
26.
A. C.
Ribeiro
,
B.
Azevedo
,
J.
Oliveira
e
, and
A. A.
Baptista
, “
How to Measure Influence in Social Networks?,
” in
Lecture Notes in Business Information Processing, Sep. 2020
, vol.
385
LNBIP, pp.
38
57
.
27.
N. N.
Daud
,
S. H. Ab
Hamid
,
M.
Saadoon
,
F.
Sahran
, and
N. B.
Anuar
, “
Applications of link prediction in social networks: A review,
Journal of Network and Computer Applications
, vol.
166
. Academic Press, p.
102716
, Sep.
2020
.
28.
S.
Wu
,
J.
Sun
, and
J.
Tang
, “
Patent partner recommendation in enterprise social networks,
” in
Proceedings of the sixth ACM international conference on Web search and data mining - WSDM ’13
,
2013
, p.
43
.
29.
H.
Yuan
,
Y.
Ma
,
F.
Zhang
,
M.
Liu
, and
W.
Shen
, “
A Distributed Link Prediction Algorithm Based on Clustering in Dynamic Social Networks,
” in
Proceedings - 2015 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2015
, Jan.
2016
, pp.
1341
1345
.
30.
N. M.
Ahmed
,
L.
Chen
,
Y.
Wang
,
Bin
Li
,
Y.
Li
, and
W.
Liu
, “
DeepEye: Link prediction in dynamic networks based on non-negative matrix factorization,
Big Data Min. Anal.
, vol.
1
, no.
1
, pp.
19
33
, Mar.
2018
.
31.
J.
Skarding
,
B.
Gabrys
, and
K.
Musial
, “
Foundations and Modeling of Dynamic Networks Using Dynamic Graph Neural Networks: A Survey,
undefined
, vol.
9
, pp.
79143
79168
,
2021
.
32.
T.
Li
,
B.
Wang
,
Y.
Jiang
,
Y.
Zhang
, and
Y.
Yan
, “
Restricted Boltzmann Machine-Based Approaches for Link Prediction in Dynamic Networks,
IEEE Access
, vol.
6
, no.
6
, pp.
29940
29951
, May
2018
.
33.
O.
Michail
and
P. G.
Spirakis
, “
Elements of the theory of dynamic networks,
Commun. ACM
, vol.
61
, no.
2
, pp.
72
72
, Jan.
2018
.
34.
G.
Rossetti
and
R.
Cazabet
, “
Community discovery in dynamic networks: A survey,
ACM Comput. Surv.
, vol.
51
, no.
2
, Feb.
2018
.
35.
M.
Kivelä
,
A.
Arenas
,
M.
Barthelemy
,
J. P.
Gleeson
,
Y.
Moreno
, and
M. A.
Porter
, “
Multilayer networks,
J. Complex Networks
, vol.
2
, no.
3
, pp.
203
271
, Sep.
2014
.
36.
U.
Aslak
,
M.
Rosvall
, and
S.
Lehmann
, “
Constrained information flows in temporal networks reveal intermittent communities,
Phys. Rev. E
, vol.
97
, no.
6
, pp.
1
10
,
2018
.
37.
L.
Speidel
,
T.
Takaguchi
, and
N.
Masuda
, “
Community detection in directed acyclic graphs,
Eur. Phys. J. B
, vol.
88
, no.
8
, p.
203
, Aug.
2015
.
38.
M.
Salama
,
M.
Ezzeldin
,
W.
El-Dakhakhni
, and
M.
Tait
, “
Temporal networks: a review and opportunities for infrastructure simulation,
Sustain. Resilient Infrastruct.
, vol.
00
, no.
00
, pp.
1
16
,
2020
.
39.
G.
Krings
,
M.
Karsai
,
S.
Bernhardsson
,
V. D.
Blondel
, and
J.
Saramäki
, “
Effects of time window size and placement on the structure of an aggregated communication network,
EPJ Data Sci.
, vol.
1
, no.
1
, pp.
1
16
, Dec.
2012
.
40.
A.
Mohan
and
K. V.
Pramod
, “
Link prediction in dynamic networks using time-aware network embedding and time series forecasting,
J. Ambient Intell. Humaniz. Comput.
, pp.
1
13
, Jul.
2020
.
41.
T.
Wu
,
C. S.
Chang
, and
W.
Liao
, “
Tracking Network Evolution and Their Applications in Structural Network Analysis,
IEEE Trans. Netw. Sci. Eng.
, Mar.
2018
.
42.
H. H.
Jo
and
T.
Hiraoka
, “
Bursty time series analysis for temporal networks∗,
arXiv. arXiv, pp.
161
179
, Jul.
2019
.
43.
P. J.
Brockwell
and
R. A.
Davis
,
Introduction to Time Series and Forecasting.
Cham
:
Springer International Publishing
,
2016
.
44.
D.
Wen
,
Y.
Huang
,
Y.
Zhang
,
L.
Qin
,
W.
Zhang
, and
X.
Lin
, “
Efficiently answering span-reachability queries in large temporal graphs,
” in
Proceedings - International Conference on Data Engineering
, Apr.
2020
, vol. 2020-April, pp.
1153
1164
.
45.
F.
Beck
,
M.
Burch
,
S.
Diehl
, and
D.
Weiskopf
, “
A Taxonomy and Survey of Dynamic Graph Visualization,
Comput. Graph. Forum
, vol.
36
, no.
1
, pp.
133
159
, Jan.
2017
.
46.
W. V.D.
Broeck
,
C.
Gioannini
,
B.
Gonçalves
,
M.
Quaggiotto
,
V.
Colizza
, and
A.
Vespignani
, “
The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale,
BMC Infect. Dis.
, vol.
11
, no.
1
, p.
37
, Feb.
2011
.
47.
C.
Castellano
,
S.
Fortunato
, and
V.
Loreto
, “
Statistical physics of social dynamics,
Rev. Mod. Phys.
, vol.
81
, no.
2
, pp.
591
646
, Apr.
2009
.
48.
A.
Badie-Modiri
,
M.
Karsai
, and
M.
Kivelä
, “
Efficient limited-time reachability estimation in temporal networks,
Phys. Rev. E
, vol.
101
, no.
5
, p.
52303
,
2020
.
49.
S.
Unicomb
,
G.
Iñiguez
,
J. P.
Gleeson
, and
M.
Karsai
, “
Dynamics of cascades on burstiness-controlled temporal networks,
Nat. Commun.
, vol.
12
, no.
1
, pp.
1
10
,
2021
.
50.
J.
Davidsen
and
G.
Kwiatek
, “
Earthquake interevent time distribution for induced micro-, nano-, and picoseismicity,
Phys. Rev. Lett.
, vol.
110
, no.
6
, p.
068501
, Feb.
2013
.
51.
L.
Turnbull
,
E.
Dian
, and
G.
Gross
, “
The string method of burst identification in neuronal spike trains,
J. Neurosci. Methods
, vol.
145
, no.
1–2
, pp.
23
35
, Jun.
2005
.
52.
K. I.
Goh
and
A. L.
Barabási
, “
Burstiness and memory in complex systems,
EPL
, vol.
81
, no.
4
, p.
48002
, Feb.
2008
.
53.
M.
Mancastroppa
,
A.
Vezzani
,
M. A.
Muñoz
, and
R.
Burioni
, “
Burstiness in activity-driven networks and the epidemic threshold,
J. Stat. Mech. Theory Exp.
, vol.
2019
, no.
5
, p.
053502
, May
2019
.
54.
R.
Lambiotte
,
L.
Tabourier
, and
J.-C.
Delvenne
, “
Burstiness and spreading on temporal networks,
Eur. Phys. J. B
, vol.
86
, no.
7
, pp.
1
4
, Jul.
2013
.
55.
M.
Kivelä
and
M. A.
Porter
, “
Estimating interevent time distributions from finite observation periods in communication networks,
Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys.
, vol.
92
, no.
5
, p.
052813
, Nov.
2015
.
56.
J.
Saramäki
and
E.
Moro
, “
From seconds to months: an overview of multi-scale dynamics of mobile telephone calls,
Eur. Phys. J. B
, vol.
88
, no.
6
, pp.
1
10
, Jun.
2015
.
57.
P.
Holme
and
N.
Masuda
, “
The Basic Reproduction Number as a Predictor for Epidemic Outbreaks in Temporal Networks,
PLoS One
, vol.
10
, no.
3
, p.
e0120567
, Mar.
2015
.
58.
R. K.
Pan
and
J.
Saramäki
, “
Path lengths, correlations, and centrality in temporal networks,
Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys.
, vol.
84
, no.
1
, Jul.
2011
.
59.
H.
Napitupulu
,
E.
Carnia
,
N.
Anggriani
, and
A. K.
Supriatna
, “
Centrality measures in transportation networks for Unpad campus route,
J. Phys. Conf. Ser.
, vol.
1722
, p.
12063
,
2021
.
60.
L.
Bellantuono
et al, “
Predicting brain age with complex networks: From adolescence to adulthood,
Neuroimage
, vol.
225
, p.
117458
, Jan.
2021
.
61.
S.
Oldham
,
B.
Fulcher
,
L.
Parkes
,
A.
Arnatkeviciūtė
,
C.
Suo
, and
A.
Fornito
, “
Consistency and differences between centrality measures across distinct classes of networks,
PLoS One
, vol.
14
, no.
7
, p.
e0220061
, Jul.
2019
.
62.
S.
Gündüç
and
R.
Eryiğit
, “
Time dependent correlations between the probability of a node being infected and its centrality measures,
Phys. A Stat. Mech. its Appl.
, vol.
563
, p.
125483
, Feb.
2021
.
63.
F.
Lu
,
K.
Yang
, and
Y.
Qian
, “
Target control based on edge dynamics in complex networks,
Sci. Rep.
, vol.
10
, no.
1
, pp.
1
12
, Dec.
2020
.
64.
J.
Li
,
L.
Dueñas-Osorio
,
C.
Chen
,
B.
Berryhill
, and
A.
Yazdani
, “
Characterizing the topological and controllability features of U.S. power transmission networks,
Physica A
, vol.
453
, pp.
84
98
,
2016
.
65.
P.
Kyriakis
,
S.
Pequito
, and
P.
Bogdan
, “
On the effects of memory and topology on the controllability of complex dynamical networks,
Sci. Rep.
, vol.
10
, no.
1
, pp.
1
13
, Dec.
2020
.
66.
T.
Wen
and
Y.
Deng
, “
The vulnerability of communities in complex networks: An entropy approach,
Reliab. Eng. Syst. Saf.
, vol.
196
, p.
106782
, Apr.
2020
.
67.
T.
Qiao
,
W.
Shan
, and
C.
Zhou
, “
How to Identify the Most Powerful Node in Complex Networks? A Novel Entropy Centrality Approach,
Entropy
, vol.
19
, no.
11
, p.
614
, Nov.
2017
.
68.
T.
Qiao
,
W.
Shan
,
G.
Yu
, and
C.
Liu
, “
A Novel Entropy-Based Centrality Approach for Identifying Vital Nodes in Weighted Networks,
Entropy
, vol.
20
, no.
4
, p.
261
, Apr.
2018
.
69.
X.
Ai
, “
Node Importance Ranking of Complex Networks with Entropy Variation,
Entropy
, vol.
19
, no.
7
, p.
303
, Jun.
2017
.
70.
Y.
Li
,
W.
Cai
,
Y.
Li
, and
X.
Du
, “
Key Node Ranking in Complex Networks: A Novel Entropy and Mutual Information-Based Approach,
Entropy
, vol.
22
, no.
1
, p.
52
, Dec.
2019
.
71.
B.
Wei
and
Y.
Deng
, “
A cluster-growing dimension of complex networks: From the view of node closeness centrality,
Phys. A Stat. Mech. its Appl.
, vol.
522
, pp.
80
87
, May
2019
.
72.
B.
Kang
and
Y.
Deng
, “
The Maximum Deng Entropy,
IEEE Access
, vol.
7
, pp.
120758
120765
,
2019
.
73.
M. M.
Tulu
,
R.
Hou
, and
T.
Younas
, “
Identifying influential nodes based on community structure to speed up the dissemination of information in complex network,
IEEE Access
, vol.
6
, no. c, pp.
7390
7401
,
2018
.
74.
P.
Xu
,
R.
Zhang
, and
Y.
Deng
, “
A novel visibility graph transformation of time series into weighted networks,
Chaos, Solitons and Fractals
, vol.
117
, pp.
201
208
, Dec.
2018
.
75.
T.
Wen
,
S.
Duan
, and
W.
Jiang
, “
Node similarity measuring in complex networks with relative entropy,
Commun. Nonlinear Sci. Numer. Simul.
, vol.
78
, p.
104867
, Nov.
2019
.
76.
J.
Enright
and
R. R.
Kao
, “
Epidemics on dynamic networks,
Epidemics
, vol.
24
. Elsevier B.V., pp.
88
97
, Sep.
2018
.
77.
L.
Gauvin
et al, “
Randomized reference models for temporal networks,
undefined
,
2018
.
78.
M. J. S.
Sahir
, “
Dynamic Inequalities for Convex Functions Harmonized on Time Scales,
J. Appl. Math. Phys.
, vol.
05
, no.
12
, pp.
2360
2370
,
2017
.
79.
X.
Liu
and
K.
Zhang
, “
Synchronization of linear dynamical networks on time scales: Pinning control via delayed impulses,
Automatica
, vol.
72
, pp.
147
152
, Oct.
2016
.
80.
T. S.
Doan
,
A.
Kalauch
,
S.
Siegmund
, and
F. R.
Wirth
, “
Stability radii for positive linear time-invariant systems on time scales,
Syst. Control Lett.
, vol.
59
, no.
3–4
, pp.
173
179
, Mar.
2010
.
81.
Z.
Bartosiewicz
and
E.
Piotrowska
, “
On stabilisability of nonlinear systems on time scales,
Int. J. Control
, vol.
86
, no.
1
, pp.
139
145
,
2013
.
82.
F. Z.
Taousser
,
M.
Defoort
, and
M.
Djemai
, “
Stability analysis of a class of uncertain switched systems on time scale using Lyapunov functions,
Nonlinear Anal. Hybrid Syst.
, vol.
16
, pp.
13
23
, May
2015
.
83.
H. H. K.
Lentz
,
T.
Selhorst
, and
I. M.
Sokolov
, “
Unfolding Accessibility Provides a Macroscopic Approach to Temporal Networks,
Phys. Rev. Lett.
, vol.
110
, no.
11
, p.
118701
, Mar.
2013
.
84.
H.
Wang
et al, “
Dynamic Reorganization of Functional Connectivity Unmasks Fatigue Related Performance Declines in Simulated Driving,
IEEE Trans. Neural Syst. Rehabil. Eng.
, vol.
28
, no.
8
, pp.
1790
1799
, Aug.
2020
.
85.
P.
Holme
, “
Analyzing temporal networks in social media,
Proceedings of the IEEE
, vol.
102
, no.
12
. Institute of Electrical and Electronics Engineers Inc., pp.
1922
1933
, Aug.
2015
.
86.
K.
Suresh
, “
An overview of randomization techniques: An unbiased assessment of outcome in clinical research,
Journal of Human Reproductive Sciences
, vol.
4
, no.
1
. pp.
8
11
, Jan.
2011
.
87.
H.-H.
Jo
,
M.
Karsai
,
J.
Kertész
, and
K.
Kaski
, “
Circadian pattern and burstiness in mobile phone communication,
New J. Phys.
, vol.
14
, no.
1
, p.
013055
, Jan.
2012
.
88.
A.
Cardillo
,
G.
Petri
,
V.
Nicosia
,
R.
Sinatra
,
J.
Gómez-Gardeñes
, and
V.
Latora
, “
Evolutionary dynamics of time-resolved social interactions,
Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys.
, vol.
90
, no.
5
, p.
052825
, Nov.
2014
.
89.
P.
Holme
and
J.
Saramäki
, “
Temporal networks,
Phys. Rep.
, vol.
519
, no.
3
, pp.
97
125
,
2012
.
90.
P.
Bajardi
,
A.
Barrat
,
F.
Natale
,
L.
Savini
, and
V.
Colizza
, “
Dynamical Patterns of Cattle Trade Movements,
PLoS One
, vol.
6
, no.
5
, p.
19869
,
2011
.
91.
A.
Kumar
,
S. S.
Singh
,
K.
Singh
, and
B.
Biswas
, “
Link prediction techniques, applications, and performance: A survey,
Physica A: Statistical Mechanics and its Applications
, vol.
553
. Elsevier B.V., p.
124289
, Sep.
2020
.
92.
K.
Selvarajah
, “
Link Prediction by Analyzing Temporal Behavior of Vertices,
”.
93.
P.
Sarkar
,
D.
Chakrabarti
, and
M.
Jordan
, “
Nonparametric link prediction in large scale dynamic networks,
Electron. J. Stat.
, no.
1
, pp.
2022
2065
,
2014
.
94.
P.
Wang
,
B. W.
Xu
,
Y. R.
Wu
, and
X. Y.
Zhou
, “
Link prediction in social networks: the state-of-the-art,
Science China Information Sciences
, vol.
58
, no.
1
. Science in China Press, pp.
1
38
, Jan.
2015
.
95.
D. Y.
Kenett
and
S.
Havlin
, “
Network science: a useful tool in economics and finance,
Mind Soc.
, vol.
14
, no.
2
, pp.
155
167
, Nov.
2015
.
96.
P.
Hu
,
D.
Geng
,
T.
Lin
, and
L.
Ding
, “
Coupled propagation dynamics on multiplex activity-driven networks,
Phys. A Stat. Mech. its Appl.
, vol.
561
, p.
125212
, Jan.
2021
.
97.
P.
Hu
,
L.
Ding
, and
X.
An
, “
Epidemic spreading with awareness diffusion on activity-driven networks,
Phys. Rev. E
, vol.
98
, no.
6
, p.
062322
, Dec.
2018
.
98.
G.
Petri
and
A.
Barrat
, “
Simplicial Activity Driven Model,
Phys. Rev. Lett.
, vol.
121
, no.
22
, p.
228301
, Nov.
2018
.
99.
L.
Zino
,
A.
Rizzo
, and
M.
Porfiri
, “
Modeling memory effects in activity-driven networks,
SIAM J. Appl. Dyn. Syst.
, vol.
17
, no.
4
, pp.
2830
2854
, Dec.
2018
.
100.
G.
Ren
and
X.
Wang
, “
Epidemic spreading in time-varying community networks,
Chaos
, vol.
24
, no.
2
, Jun.
2014
.
101.
M.
Starnini
,
A.
Baronchelli
, and
R.
Pastor-Satorras
, “
Modeling human dynamics of face-to-face interaction networks,
Phys. Rev. Lett.
, vol.
110
, no.
16
, p.
168701
, Apr.
2013
.
102.
V.
Popovych
,
F.
Ragimov
,
V.
Kornienko
,
I. B.
Ivanova
, and
B.
Zoriana
, “
Development of social and communicative paradigm of public administration in the field of social networks,
Int. J. Data Netw. Sci.
, vol.
4
, no.
3
, pp.
319
328
, Jul.
2020
.
103.
K. L.
Schaber
et al, “
Disease-driven reduction in human mobility influences human-mosquito contacts and dengue transmission dynamics,
PLoS Comput. Biol.
, vol.
17
, no.
1
, p.
e1008627
, Jan.
2021
.
104.
A.
Reinhart
, “
A Review of Self-Exciting Spatio-Temporal Point Processes and Their Applications,
Stat. Sci.
, vol.
33
, no.
3
, pp.
299
318
, Aug.
2018
.
105.
L.
Zheng
,
G.
Raskutti
,
R.
Willett
, and
B.
Mark
, “
Context-dependent self-exciting point processes: models, methods, and risk bounds in high dimensions,
” arXiv preprint arXiv:2003.07429,
2020
.
106.
C. L.
Vestergaard
,
M.
Génois
, and
A.
Barrat
, “
How memory generates heterogeneous dynamics in temporal networks,
Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys.
, vol.
90
, no.
4
, p.
042805
, Oct.
2014
.
107.
C. Ho
Yeung
and
D.
Saad
, “
Random walk centrality for temporal networks Related content Networking-a statistical physics perspective,
2014
.
108.
P.
Holme
, “
Epidemiologically Optimal Static Networks from Temporal Network Data,
Cit. Holme P
, vol.
9
, no.
7
, p.
1003142
,
2013
.
109.
L.
Speidel
,
R.
Lambiotte
,
K.
Aihara
, and
N.
Masuda
, “
Steady state and mean recurrence time for random walks on stochastic temporal networks,
Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys.
, vol.
91
, no.
1
, p.
12806
, Jan.
2015
.
110.
A.
Barrat
,
B.
Fernandez
,
K. K.
Lin
, and
L. S.
Young
, “
Modeling temporal networks using random itineraries,
Phys. Rev. Lett.
, vol.
110
, no.
15
, p.
158702
, Apr.
2013
.
111.
T.
Britton
, “
Epidemic models on social networks—With inference,
Stat. Neerl.
, vol.
74
, no.
3
, pp.
222
241
, Aug.
2020
.
112.
J.
Li
,
T.
Xiang
, and
L.
He
, “
Modeling epidemic spread in transportation networks: A review,
Journal of Traffic and Transportation Engineering (English Edition)
, vol.
8
, no.
2
. Chang’an University, pp.
139
152
, Apr.
2021
.
113.
P.
Holme
, “
Model versions and fast algorithms for network epidemiology,
arXiv Prepr. arXiv1403.1011, pp.
1
7
, Mar.
2014
.
This content is only available via PDF.
You do not currently have access to this content.