Recursive digital hydrographic is an automatic and recommended method of separating baseflow to obtain reproducible results. Digital filters help assess the contribution of water to the total flow of a river, while measuring the flow of the riverbed requires sensitive and accurate flow separation techniques. Therefore, this study aims to analyze the analysis of one-way ANOVA digital filter methods for the hydrological characteristics of the small island watershed of Ambon City, including RDF one parameter algorithm, two-parameter algorithm, RDF Lyne & Holick, RDF Chapman, and RDF Eckhard. The one-factor Fingerprint Analysis (ANOVA) results for the five RDF methods of baseflow separation showed that the distribution of baseflow data was generally with a Shapiro-Wilk coefficient greater than α 0.05 and homogeneity with a Levene coefficient of 0.560 greater>α 0.05. The baseflow separation of the five RDF methods has a significant difference with a significance value of 0.001<α 0.05, and the highest average base flow value of the five RDF methods in a row is the Two-parameter algorithm method, followed by the One-parameter algorithm, Eckhardt algorithm, Lyne &Hollick algorithm, and Chapman algorithm. In conjunction with the Turkish test, this calculation showed that the flow separation for the four RDF methods, Lyne &Hollick algorithm, Eckhardt algorithm, One-parameter algorithm, and two-parameter algorithm, have significant similarities and differ significantly from the RDF-Chapman method. These results are strongly influenced by the hydrological characteristics of small island watersheds with limited rain catchment areas and are vulnerable to global environmental changes.

1.
K.
Eckhardt
,
Hydrol Process.
;
19
(
2
):
507
515
(
2005
).
2.
I.
Indarto
,
A.
Ratnaningsih
,
S.
Wahyuningsih
,
J Eng Appl Sci.
12(12
),
3772
3778
, [
2017
].
3.
V.U.
Smakhtin
,
J Hydrol
,
240
(
3–4
),
147
186
, (
2001
).
4.
D.
Ratnasari
, Indarto,
S.
Wahyuningsih
,
Studi Baseflow Menggunakan Perbandingan 6 Metode RDF (Recursive Digital Filter
)
1
7
, (
2015
).
5.
A.
Rimmer
,
A.
Hartmann
,.
J Hydrol
,
514
,
249
257
(
2014
).
6.
Eckhardt
K.
,
Hydrol Earth Syst Sci.
16
(
2
),
451
455
, (
2012
).
7.
C. J.
Chawanda
,
J.
Nossent
,
W.
Bauwens
, Available at http://adsabs.harvard.edu/abs/2017EGUGA.1918768C, (
2017
)
8.
J.
Sujono
,
S.
Shikasho
,
K.
Hiramatsu
,
Hydrol Process
,
18
(
3
),
403
413
, (
2004
).
9.
Z.
Jing
,
L.
Zhang
, Yue,
Q.
Xie
,
Y.
Li
,
S.
Deng
S
Huai
,
F.
Shen
,
Water Resour Manag.
30
(
1
),
195
206
, (
2016
).
10.
S.
He
,
S. Li, R. Xie, J. Lu
,
J Hydrol
,
535
,
418
428
(
2016
)
11.
R.
Mohammed
,
M.
Scholz
,
Hydrol Sci J
,
63
(
10
),
1558
1573
.
12.
N.D.
Puspitasari
,
S.
Wahyuningsih
,
[Eastern Part of East.
1
,
2
7
, (
2015
).
13.
B.
Latuamury
,
H.
Marasabessy
,
M.
Talaohu
,
W.N
Imlabla
,
In: IOP Conference Series: Earth and Environmental Science.
(
2021
).
14.
C.H.
Su
,
J.F.
Costelloe
,
T.J.
Peterson
,
Western
AW
. (
2015
).
15.
R.
Zhang
,
Q.
Li
,
T.L.
Chow
,
S.
Li
,
S.
Danielescu
,
Hydrol Process
,
27
(
18
),
2659
6265
, (
2012
).
16.
Walter
Collischonn
,
F.M.
Fan
,
Hydrol Process
,
27
(
18
),
2614
2622
, (
2013
).
17.
W.
Yang
,
C.
Xiao
,
Z.
Zhang
,
X.
Liang
,
Hydrol Earth Syst Sci
,
25
(
4
):
1747
1760
, (
2021
).
18.
G.
Giakasa
,
V.
Baltzopoulosa
,
R. M.
Bartletta
,
J Biomech
,
14
(
7
),
87
91
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.