Determining the effect of a natural compound extracted from honey to check its antimicrobial efficacy i.e bactericidal and bacteriostatic effect on pathogenic organisms. Novel Bioactive component extracted from honey and its effectivity were determined by measuring the zone of clearance (mm) through the agar diffusion method (1 group and 20 samples per group by keeping threshold 0.05 and G power 80%, coincidence interval 95%, and enrollment ratio as 1) using kanamycin (30) as a control for a different time 24 Hrs, 48 Hrs, and 72 Hrs at 37°C. Promising results were found in the Staphylococcus aureus (P<0.001) zone of clearance and no significance was detected for E.coli and Pseudomonas. Compared to 10% compound application where 9% bacterial growth was recorded the addition of 100% compound approximately inhibits 99% bacterial growth. For S.aureus honey was found really effective. Novel bioactive compound from honey was found very effectively only on pathogenic staphylococci and can be used as a natural component with antimicrobial efficacy in the field of medicine.

1.
Albaridi
,
Najla
A.
2019
. “
Antibacterial Potency of Honey
.”
International Journal of Microbiology
2019
:
2464507
.
2.
Almasaudi
,
Saad
B.
,
Saad M.
Al Muhayawi
,
Soad
Al-Jaouni
,
Esam
Azhar
,
Mohamad
Qari
,
Yousef A.
Qari
, and
Steve
Harakeh
.
2017
. “
Antimicrobial Effect of Different Types of Honey on Staphylococcus Aureus
.”
Saudi Journal of Biological Sciences.
.
3.
Cianciosi
,
Danila
,
Massimiliano
Gasparrini
,
Patricia
Reboredo-Rodriguez
,
Piera
Manna
,
Jiaojiao
Zhang
, et al
2018
. “
Phenolic Compounds in Honey and Their Associated Health Benefits: A Review
.”
Molecules.
.
4.
Vallianou
,
Natalia
G.
2014
. “
Honey and Its Anti-Inflammatory, Anti-Bacterial and Anti-xidant roperties
.”
General Medicine: Open Access.
.
5.
Albaridi
,
Najla
A.
2019
. “
Antibacterial Potency of Honey
.”
International Journal of Microbiology.
.
6.
Ali
,
Muhammad
.
2018
. “
Antibacterial Activity of Honey Against Staphylococcus Aureus and Pseudomonas Aeruginosa Isolated from Infected Wound
.”
Archives of Pharmacy & Pharmacology Research.
.
7.
Boukraâ
,
Laïd.
2013
. “
Healing Properties of Honey
.”
Honey in Traditional and Modern Medicine.
.
8.
Eteraf-Oskouei
, and
A.
Gharehbagheri
.
2013
. “
Natural Honey: A New and Potent Anti-Angiogenic Agent in the Air-Pouch Model of Inflammation
.”
Drug Research.
.
9.
Honey between Traditional Uses and Recent Medicine
.”
2012
.
Macedonian Journal of Medical Sciences.
.
10.
Krishnakumar
,
Shalini
Muthusamy
, and
Sinduja Malarkodi
Elangovan
.
2020
. “
Honey Based Treatment Strategies for Infected Wounds and Burns: A Systematic Review of Recent Pre-Clinical Research
.”
Wound Medicine.
.
11.
Kumar
,
Muthusamy Ramasamy
Sripriya
, and
Praveen Kumar
Sehgal
.
2006
. “
Expression of Matrix Metalloproteinases (MMP-8 and-9) in Chronic Periodontitis Patients with and without Diabetes Mellitus
.”
Journal of Periodontology
77
(
11
):
1803
8
.
12.
Mama
,
Mohammedaman
, and
Jafer
Detamo
.
2019
. “
Antibacterial Activity of Honey against Methicillin-Resistant Staphylococcus Aureus: A Laboratory-Based Experimental Study
.”
International Journal of Microbiology.
.
13.
Mandal
, and
Shyamapada
Mandal
.
2011
. “
Honey: Its Medicinal Property and Antibacterial Activity
.”
Asian Pacific Journal of Tropical Biomedicine
1
(
2
):
154
60
.
14.
M
,
Bapugouda
, and
Neeraja
Guruvu
.
2020
. “
Antimicrobial Activity of Different Types of Honeys against Wound Pathogens
.”
National Journal of Physiology, Pharmacy and Pharmacology.
.
15.
Mehta
,
Meenu
,
Gaurav
Gupta
,
Rajendra
Awasthi
,
Harjeet
Singh
,
Parijat
Pandey
, et al
2019
. “
Oligonucleotide Therapy: An Emerging Focus Area for Drug Delivery in Chronic Inflammatory Respiratory Diseases
.”
Chemico-Biological Interactions
308
(August):
206
15
.
16.
Mirzaei
,
Arezou
,
Parisa Mehrabi
Moghadam
, and
Hassan
Mahmoudi
.
2020
. “
Antibacterial Activity of Honey against Methicillin-Resistant and Sensitive Staphylococcus Aureus Isolated from Patients with Diabetic Foot Ulcer
.”
The Open Microbiology Journal.
.
17.
Gürbüz
,
B.
,
Sümeyra
,
A. Y. A. N.
,
BOZLAR
,
M.
, &
ÜSTÜNDAĞ
,
C. B.
(
2020
).
Carbonaceous nanomaterials for phototherapy: a review
.
Emergent Materials
,
1
24
.
18.
Li
,
H.
,
Zhang
,
W.
,
Liu
,
D.
, &
Li
,
W.
(
2020
).
Template-directed synthesis of mesoporous TiO 2 materials for energy conversion and storage
.
Emergent Materials
,
3
(
3
),
315
329
.
19.
Acharya
,
V.
,
Sharma
,
A.
,
Chourasia
,
N. K.
, &
Pal
,
B. N.
(
2020
).
Solution-processed Pb 0.8 Ba 0.2 ZrO 3 as a gate dielectric for low-voltage metal-oxide thin-film transistor
.
Emergent Materials
,
1
6
.
20.
Sibeko
,
M. A.
,
Saladino
,
M. L.
,
Armetta
,
F.
,
Spinella
,
A.
, &
Luyt
,
A. S.
(
2019
).
Effect of preparation method on the properties of poly (methyl methacrylate)/mesoporous silica composites
.
Emergent Materials
,
2
(
3
),
363
370
.
21.
Leveneur
,
J.
,
Williams
,
G. V.
,
Mitchell
,
D. R.
, &
Kennedy
,
J.
(
2019
).
Exchange bias and large room temperature magnetoresistance in ion beam-synthesized Co nanoparticles in SiO 2
.
Emergent Materials
,
2
(
3
),
313
325
.
22.
Park
,
S. S.
,
Ameduri
,
B.
, &
Ha
,
C. S.
(
2019
).
One-pot synthesis of alkylammonium-functionalized mesoporous silica hollow spheres in water and films at the air–water interface
.
Emergent Materials
,
2
(
1
),
45
58
.
23.
Shri
,
K. M.
,
Balamurugan
,
S.
,
Ashika
,
S. A.
,
Sana
Fathima
, T. K., &
Palanisami
,
N.
(
2021
).
Oxalic acid-derived combustion synthesis of multifunctional nanostructured copper oxide materials
.
Emergent Materials
,
4
(
5
),
1387
1398
.
24.
Thomas
,
B.
,
Shilpa
,
E. P.
, &
Alexander
,
L. K.
(
2021
).
Role of functional groups and morphology on the pH-dependent adsorption of a cationic dye using banana peel, orange peel, and neem leaf bio-adsorbents
.
Emergent Materials
,
1
9
.
25.
Sahu
,
T. K.
,
Ranjan
,
P.
, &
Kumar
,
P.
(
2021
).
Chemical exfoliation synthesis of boron nitride and molybdenum disulfide 2D sheets via modified Hummers’ method
.
Emergent Materials
,
4
(
3
),
645
654
.
26.
Guo
,
H.
,
Feng
,
Z.
,
Qin
,
P.
,
Yan
,
H.
,
Zhou
,
X.
,
Hu
,
S.
, … &
Liu
,
Z.
(
2021
).
Fabrication and characterization of epitaxial ferrimagnetic Mn3Ga thin films with perpendicular magnetic anisotropy
.
Emergent Materials
,
4
(
3
),
589
595
.
27.
Singh
,
G.
,
Ghai
,
V.
,
Chaudhary
,
S.
,
Singh
,
S.
,
Agnihotri
,
P. K.
, &
Singh
,
H.
(
2021
).
Effect of graphene on thermal conductivity of laser cladded copper
.
Emergent Materials
,
1
8
.
28.
Kansara
,
K.
,
Sathish
,
C. I.
,
Vinu
,
A.
,
Kumar
,
A.
, &
Karakoti
,
A. S.
(
2021
).
Assessment of the impact of abiotic factors on the stability of engineered nanomaterials in fish embryo media
.
Emergent Materials
,
1
12
.
29.
Colombani
,
T.
,
Rogers
,
Z. J.
,
Eggermont
,
L. J.
, &
Bencherif
,
S. A.
(
2021
).
Harnessing biomaterials for therapeutic strategies against COVID-19
.
Emergent Materials
,
1
10
.
30.
Khan
,
A. H.
,
Schirmann
,
E.
, &
Kovi
,
K. K.
(
2021
).
Fluorinated graphene oxide, nanocrystalline diamond multilayer thin films for optical and electromagnetic limiting applications
.
Emergent Materials
,
4
(
2
),
525
530
.
31.
Bensghaïer
,
A.
,
Bhullar
,
V.
,
Kaur
,
N.
,
Lo
,
M.
,
Bdiri
,
M.
,
Mahajan
,
A.
, &
Chehimi
,
M. M.
(
2021
). “
Painted CNT”@ Au nanoparticles: a nanohybrid electrocatalyst of direct methanol oxidation
.
Emergent Materials
,
4
(
2
),
515
524
.
32.
Kumara
,
K. J.
,
Krishnamurthy
,
G.
,
Walmik
,
P.
,
Naik
,
S.
,
Rani
,
R. P.
, &
Naik
,
N.
(
2021
).
Synthesis of reduced graphene oxide decorated with Sn/Na doped TiO 2 nanocomposite: a photocatalyst for Evans blue dye degradation
.
Emergent Materials
,
4
(
2
),
457
468
.
33.
Mandal
,
D.
,
Mahapatra
,
P. L.
,
Kumari
,
R.
,
Kumbhakar
,
P.
,
Biswas
,
A.
,
Lahiri
,
B.
, … &
Tiwary
,
C. S.
(
2021
).
Convert waste petroleum coke to multi-heteroatom self-doped graphene and its application as supercapacitors
.
Emergent Materials
,
4
(
2
),
531
544
.
34.
Sumadevi
,
K. R.
,
Krishnamurthy
,
G.
,
Walmik
,
P.
,
Rani
,
R. P.
,
Naik
,
S.
,
Naik
,
H. B.
, &
Naik
,
N.
(
2021
).
Photocatalytic degradation of Eriochrome black-T and Evan’s blue dyes under the visible light using PVA capped and uncapped Ag doped ZnS nanoparticles
.
Emergent Materials
,
4
(
2
),
447
456
.
35.
Mozammel
,
T.
,
Dumbre
,
D.
,
Selvakannan
,
P. R.
,
Sadasivuni
,
K. K.
, &
Bhargava
,
S. K.
(
2021
).
Calcined hydrotalcites of varying Mg/Al ratios supported Rh catalysts: highly active mesoporous and stable catalysts toward catalytic partial oxidation of methane
.
Emergent Materials
,
4
(
2
),
469
481
.
36.
Girish
,
Y. R.
,
Prashantha
,
K.
, &
Byrappa
,
K.
(
2021
).
Recent advances in aggregation-induced emission of mechanochromic luminescent organic materials
.
Emergent Materials
,
1
52
.
37.
Ertas
,
Y. N.
,
Mahmoodi
,
M.
,
Shahabipour
,
F.
,
Jahed
,
V.
,
Diltemiz
,
S. E.
,
Tutar
,
R.
, &
Ashammakhi
,
N.
(
2021
).
Role of biomaterials in the diagnosis, prevention, treatment, and study of corona virus disease 2019 (COVID-19
).
Emergent Materials
,
1
21
.
38.
Limsakul
,
P.
,
Charupanit
,
K.
,
Moonla
,
C.
, &
Jeerapan
,
I.
(
2021
).
Advances in emergent biological recognition elements and bioelectronics for diagnosing COVID-19
.
Emergent Materials
,
1
17
.
39.
Msaadi
,
R.
,
Sassi
,
W.
,
Hihn
,
J. Y.
,
Ammar
,
S.
, &
Chehimi
,
M. M.
(
2021
).
Valorization of pomegranate peel balls as bioadsorbents of methylene blue in aqueous media
.
Emergent Materials
,
1
10
.
40.
Guvener
,
O.
,
Eyidogan
,
A.
,
Oto
,
C.
, &
Huri
,
P. Y.
(
2021
).
Novel additive manufacturing applications for communicable disease prevention and control: focus on recent COVID-19 pandemic
.
Emergent materials
,
1
11
.
41.
James
,
A. O.
, &
Iroha
,
N. B.
(
2021
).
New green inhibitor of Olax subscorpioidea root for J55 carbon steel corrosion in 15% HCl: theoretical, electrochemical, and surface morphological investigation
.
Emergent Materials
,
1
13
.
42.
Krupadam
,
R. J.
, &
Rayalu
,
S. S.
(
2021
).
Melamine-based resins and their carbons for CO 2 capture: a review
.
Emergent Materials
,
1
19
.
This content is only available via PDF.
You do not currently have access to this content.