Backpropagation is a supervised learning algorithm that is widely used to solve problems. There are 12 types of training algorithms contained in the Backpropagation network. These algorithms need to be tested to get the most accurate training algorithm in the accuracy of data pattern matching. In this study, the twelve algorithms were tested using two neuron models, namely 15-20-1 and 15-25-1. In this test, the main network parameters used are target error=0.001 with 12 variations of learning rate, namely 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1. Based on the results of the ANOVA test with alpha (α)=5%, the results show that the Levenberg-Marquardt (LM) algorithm is the most accurate algorithm for both neuron models with an average difference between the network output data and the target (delta) of 0.00577 and 0.00515, respectively. This delta value is achieved at lr=0.2 for the neuron 15-20-1 model and lr=0.8 for the 15-25-1 neuron model. Thus, the LM algorithm can be considered in choosing a training algorithm for application development in the field of artificial neural networks.

1.
T.
Sutojo
,
E.
Mulyanto
, and
V.
Suhartono
, V.,
Kecerdasan Buatan
(
ANDI
,
2011
).
2.
W.
Budiharto
and
D.
Suhartono
,
ARTIFICIAL INTELLLIGENCE: Konsep dan Penerapanya
(
Andi Offset
,
2014
).
3.
I.
Stanimirović
,
APPLIED NEURAL NETWORKS AND SOFT COMPUTING
(
Arcler Press
,
2019
).
4.
J.
Heaton
,
Artificial Intelligence for Humans, Volume 3: Neural Networks and Deep Learning
(
Heaton Research Inc
.,
2015
).
5.
C.
Perez
,
DATA MINING with MATLAB. PATTERN RECOGNITION
(
Amazon Digital Services
,
2019
).
6.
F.
Wibowo
,
S.
Sugiyanto
, and
H.
Mustafidah
,
Tingkat Ketelitian Pengenalan Pola Data pada Algoritma Pelatihan Perbaikan Metode Batch Mode dalam Jaringan Syaraf Tiruan
,
JUITA (Jurnal Inform.
II
,
259
264
(
2013
).
7.
J.
Heaton
,
Introduction to Neural Networks for C#
(
Heaton Research, Inc
.,
2008
).
8.
H.
Mustafidah
and
S.
Suwarsito
,
Dasar-dasar Metodologi Penelitian
(
UMP Press
,
2020
).
9.
H.
Mustafidah
and
S.
Suwarsito
,
Model Parameter Jaringan Syaraf Tiruan untuk Pemilihan Algoritma Pelatihan Jaringan Backpropagation yang Paling Optimal
(
2015
).
10.
H.
Mustafidah
and
S.
Suwarsito
, “Testing Design of Neural Network Parameters in Optimization Training Algorithm,” in
International Conference of Result and Community Services, 6th August 2016
(ed. 2016, I.) THN. 139-146 (
UMP Press
,
2016
).
11.
T.
Taniredja
and
H.
Mustafidah
,
Penelitian Kuantitatif (Sebuah Pengantar)
(
ALFABETA
,
2011
).
12.
S.
Yamin
and
H.
Kurniawan
,
SPSS COMPLETE (Teknik Analisis Terlengkap dengan Software SPSS)
(
Salemba Infotek
,
2014
).
13.
F. A.
Irawan
,
Buku Pintar Pemrograman MATLAB
(
Mediakom
,
2012
).
14.
R.
Sianipar
,
Pemrograman Matlab
(
ANDI OFFSET
,
2015
).
15.
H.
Mustafidah
and
S.
Suwarsito
,
Model Parameter Jaringan Syaraf Tiruan untuk Pemilihan Algoritma Pelatihan Jaringan Backpropagation yang Paling Optimal
(
2016
).
16.
H.
Mustafidah
and
S.
Suwarsito
,
Error Rate Testing of Training Algorithm in Back Propagation Network
,
Int. J. Soft Comput. Eng.
5
,
46
50
(
2015
).
This content is only available via PDF.
You do not currently have access to this content.