In this paper, we discuss some properties of generalized modular metric spaces. This space was first introduced by Turkoglu and Manav in 2018. Later, we extend the concepts about contraction mappings in generalized modular metric spaces. We also develop a convexity structure and defined the N normal structure in this space.The results show us that if X is a complete modular metric space and TN is a contraction mapping then T has a unique fixed point.Moreover, we need the constant of generalized modular metric axiom should be less than or equal to 1 to guarantee the ball is closed. The closeness property of the ball is necessary to generate normal structure in generalized modular metric space. This normal structure property assures the existence of the fixed point of a nonexpansive mapping.

1.
Chistyakov
VV
2010
Modular metric spaces I
Nonlinear Analysis
72
pp
1
14
2.
Goebel
K.
and
Kirk
WA
1990
Topics in Metric Fixed Point Theory
(
New York
:
Cambridge University Press, Inc
.)
3.
Jleli
M.
and
Samet
BM
2015
A generalized metric space and related fixed point theorems Fixed Point Theory and Appl. p 61
4.
Khamsi
MA
and
Kirk
WA
2001
An Introduction to Metric Spaces and Fixed Point Theory
(
Canada
:
John Wiley & Sons, Inc
.)
5.
Orlicz
W.
and
Musielak
J.
1959
On modular spaces Studia Math.
18
pp
49
64
6.
Turkoglu
D.
and
Manav
N.
2018
Fixed point theorem in a new type of modular metric spaces Fixed Point Theory and Appl. 25
7.
Harini
L.
2019
Teorema titik tetap untuk pemetaan Kannan pada ruang metrik modular teritlak
J.Ilmiah Matematika dan Pendidikan Matematika (JMP)
11
(
2
) pp
11
8
8.
Gulevich
NM
1996
Fixed points of nonexpansive mappings
J. Math. Science
79
(
1
)
9.
Abdou
AA
and
Khamsi
MA
2013
On the fixed points of nonexpansive mappings in modular metric spaces Fixed Point Theory and Appl. 2013 229
10.
Ghoncheh
HBM
2015
Some fixed point theorems for Kannan mapping in the modular spaces
Ciencia eNatura
37
(
1
) pp
462
6
11.
Kannan
R.
1969
Some results on fixed points II American Mathematical Monthly
76
pp
405
8
12.
Karapinar
E.
,
O'Regan
D.
,
Roldan Lopez de Hierro
AF
,
Shahzad
N.
2016
Fixed point theorems in new generalized metric spaces
J. Fixed Point Theory Appl.
18
pp
645
671
13.
Khamsi
MA
,
Reich
S.
,
Kozlowski
WM
1990
Fixed point theory in modular function spaces Nonlinear Analysis
Th. M. Appl
14
pp
935
953
14.
Kumam
P.
2004
Fixed point theorems for nonexpansive mappings in modular spaces
.
Archivum Mathematicum Tomus
40
pp
345
353
This content is only available via PDF.
You do not currently have access to this content.