Traditionally, simple flow stress laws including Hollomon and Swift models have been much employed. However, the simple models or laws could cover only limited part of materials including cold forgeable steels because they could be appropriately described by the models. Nowadays, special metals and new materials are being widely employed and new material models are needed for their accurate description of flow stress. In this paper, flow stress models of metallic materials at room temperature are reviewed and the tensile test is recovered with an emphasis on the post-necking strain hardening of material models. The necking point, consuming two degrees of freedom, is emphasized in characterizing the material constants because plastic deformation after it is very sensitive to itself. The well-known material models are first grouped into three categories such as Ludwik involving Hollomon, Voce, and Swift flow stress models. These three fundamental flow stress models are investigated in terms of tensile test to reveal their post-necking strain hardening behaviors using purposely the rigid-plastic finite element method, which predicts the necking point exactly in the engineering sense without any imperfection of cylindrical specimen.

1.
J. G.
Eom
,
Y. H.
Son
,
S. W.
Jeong
,
S. T.
Ahn
,
D. J.
Yoon
,
M. S.
Joun
, “
Effect of strain hardening capability on plastic deformation behaviors of material during metal forming
,”
Mater. Des.
54
,
1010
1018
(
2014
).
2.
S.
Lee
,
J.
Lee
,
M. S.
Joun
, “
On critical surface strain during hot forging of lubricated aluminum alloy
,”
Tri. Int.
141
,
105855
(
2020
).
3.
Ludwik
,
Elemente der Technologischen Mechanik
(
Verlag Von Julius Springer
,
Leipzig
,
1909
).
4.
E.
Voce
, “
The relationship between stress and strain for homogeneous deformation
,”
J. Inst. Met.
74
, pp.
537
562
(
1948
).
5.
J. H.
Hollomon
, “
Tensile deformation
,”
Trans. Metall. Soc. AIME.
162
,
268
290
(
1945
).
6.
H. W.
Swift
, “
Plastic Instability under Plane Stresses
,”
J. Mech. Phys. Solids.
1
,
1
18
(
1952
).
7.
C. S.
Im
,
S. R.
Suh
,
M. C.
Lee
,
J. H.
Kim
,
M. S.
Joun
, “
Computer aided process design in cold-former forging using a forging simulator and a commercial CAD software
,”
J. Mater. Process. Technol.
95
,
155
163
(
1999
).
8.
S. Y.
Hsia
,
Y. T.
Chou
, “
Fabrication improvement of cold forging hexagonal nuts by computational analysis and experiment verification
,”
Math. Probl. Eng.
8
,
6640
6657
(
2015
).
9.
S. H.
Lin
,
D. C.
Chen
,
U. C.
Chai
,
G. Y.
Tzou
, “
FEM Analysis and Experiment Validation on Multi-Pass Forging of Torx Round Flange Bolt
,”
Int. J. Automot. Technol.
21
,
1113
1119
(
2020
).
10.
J. B.
Byun
,
H. J.
Lee
,
J. B.
Park
,
I. D.
Seo
,
M. S.
Joun
, “
Fully coupled finite element analysis of an automatic multi-stage cold forging process
,”
Solid. State. Phenom.
311
,
88
93
(
2020
).
11.
P. W.
Bridgman
,
Studies in Large Plastic Flow and Fracture
(
McGraw-Hill
,
New York
,
1952
).
12.
J. M.
Choung
,
S. R
Cho
, “
Study on true stress correction from tensile tests
,”
J. Mech. Sci. Technol.
22
,
1039
1051
(
2008
).
13.
P.
Siegmann
,
C.
Alén-Cordero
,
R.
Sánchez-Montero
, “
Experimental approach for the determination of the Bridgman’s necking parameters
,”
Meas. Sci. Technol.
30
,
114003
114026
(
2019
).
14.
M. J.
Dong
,
C.
Prioul
,
D.
Francois
, “
Damage effect on the fracture toughness of nodular cast iron: part I. damage characterization and plastic flow stress modeling
,”
Met. Mater. Trans. A
28
,
2245
2254
(
1997
).
15.
B.
Behrens
,
A.
Bouguecha
,
C.
Bonk
,
M.
Dykiert
, “
Experimental characterization and material modelling of an AZ31 magnesium sheet alloy at elevated temperatures under consideration of the tension-compression asymmetry
,”
J. Phys. Conf. Ser.
896
,
12
19
(
2017
).
16.
H. D.
Kweon
,
J. W.
Kim
,
O. S
Song
,
D. H.
Oh
, “
Determination of true stress-strain curve of type 304 and 316 stainless steels using a typical tensile test and finite element analysis
,”
Nucl. Eng. Technol.
53
,
647
656
(
2020
).
17.
J. B.
Byun
,
M. K.
Razali
,
C. J.
Lee
,
I. D.
Seo
,
W. J.
Chung
,
M. S.
Joun
, “
Automatic multi-stage cold forging of an SUS304 ball-stud with a hexagonal hole at one end
,”
Materials
13
,
5300
5316
(
2020
).
18.
M. S.
Joun
,
J. G.
Eom
,
M. C.
Lee
,
J. H.
Park
,
D. J.
Yoon
, 2008, “
Tensile test-based material identification program AFDEX/MAT and its application to two new pre-heat treated steels
,”
Int. J. Modern Physics B
22
,
5774
5779
(
2008
).
19.
M.
Mišović
, “
Deformation characteristics of aluminium alloys
,”
Građevinar
68
,
179
189
(
2016
).
20.
J. F.
Kreyca
, “
State parameter-based modelling of stress-strain curves in aluminium alloys
,” PhD thesis,
TU Wien
,
2017
.
21.
M.
Dunand
,
D.
Mohr
, “
On the predictive capabilities of the shear modified gurson and the modified Mohr– Coulomb fracture models over a wide range of stress triaxialities and lode angles
,”
J. Mech. Phys. Solids.
59
,
1374
1394
(
2011
).
22.
A.
Poulon-Quintin
,
J. B.
Vogt
,
V.
Shivanyuk
,
D. J.
Foct
, “
Characterisation and understanding of TRIP steels
,”
J. Phys. IV France
118
,
355
368
(
2004
).
23.
S. K.
Paul
,
S.
Roy
,
S.
Sivaprasad
,
H. N.
Bar
,
S.
Tarafder
, “
Identification of post-necking tensile stress–strain behavior of steel sheet: an experimental investigation using digital image correlation technique
,”
J. Mater. Eng. Perform.
27
,
5736
5743
(
2018
).
24.
J.
Li
,
G.
Yang
,
T.
Siebert
,
M. F.
Shi
,
L.
Yang
, “
A method of the direct measurement of the true stress-strain curve over a large strain range using multi-camera digital image correlation
,”
Opt. Lasers Eng.
107
,
194
201
(
2018
).
25.
B.
Chen
,
B.
Pan
, “
Mirror-assisted panoramic-digital image correlation for full-surface 360-deg deformation measurement. Measurement
,”
Meas. J. Int. Meas. Confed.
132
,
350
358
(
2019
).
26.
M.
Quanjin
,
M. R.
Rejab
,
Q.
Halim
,
M. N.
Merzuki
,
M. A.
Darus
, “
Experimental investigation of the tensile test using digital image correlation (DIC) method
,”
Mater. Todays: Proc.
27
,
757
763
(
2020
).
27.
Q.
Zheng
,
N.
Mashiwa
,
T.
Furushima
, “
Evaluation of large plastic deformation for metals by a non-contacting technique using digital image correlation with laser speckles
,”
Mater. Des.
191
,
108626
108639
(
2020
).
28.
M.
Kim
,
B.
Gu
,
S.
Hong
, “
Determination of post-necking stress-strain relationship for zirconium low-oxidation based on actual cross-section measurements by DIC
,”
J. Mech. Sci. Technol.
34
,
4211
4217
(
2020
).
29.
Z.
Mu
,
J.
Zhao
,
G.
Yu
,
X.
Huang
,
Q.
Meng
,
R.
Zhai
, “
Hardening model of anisotropic sheet metal during the diffuse instability necking stage of uniaxial tension
”,
Thin-Walled Struct.
159
,
107198
107212
(
2021
).
30.
P. D.
Versaillot
,
Y. F
Wu
,
Z. L.
Zhao
, “
Experimental study on the evolution of necking zones of metallic materials
,”
Int. J. Mech. Sci.
189
,
106002
106015
(
2021
).
31.
Y. C.
Lin
,
X. M.
Chen
, “
A critical review of experimental results and constitutive descriptions for metals and alloys in hot working
,”
Mater. Des.
32
,
1733
1759
(
2011
).
32.
S.
Tu
,
X.
Ren
,
J.
He
,
Z.
Zhang
, “
Stress–strain curves of metallic materials and post-necking strain hardening characterization: A review
,”
Fat. Fract. Eng. Mater. Struct.
43
,
3
19
(
2020
).
33.
R.
Liang
,
A. S
Khan
, “
A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures
,”
Int. J. Plast.
15
,
963
980
(
1999
).
34.
M. S.
Joun
,
S. T.
Ahn
,
H. T.
Jin
,
Y. H.
Son
,
D. J.
Yoon
, “
Quantitative study of the Bauschinger effect in high-strength low-strain-hardening materials for metal forming applications
,”
Int. J. Mater. Prod. Technol.
54
,
20
31
(
2017
).
35.
A.
Gavrus
,
E.
Massoni
,
J. L.
Chenot
, “
An inverse analysis using a finite element model for identification of rheological parameters
,”
J. Mat. Proc. Tech.
60
,
447
454
(
1996
).
36.
R.
Mahnken
,
E.
Stein
, “
A unified approach for parameter identification of inelastic material models in the frame of the finite element method
,”
Comput. Methods Appl. Mech. Eng.
136
,
225
258
(
1996
).
37.
M. S.
Joun
,
J. G.
Eom
,
M. C.
Lee
, “
A new method for acquiring true stress–strain curves over a large range of strains using a tensile test and finite element method
,”
Mech. Mater.
40
,
586
596
(
2008
).
38.
M. S.
Joun
,
S. W.
Jeong
,
Y. T.
Park
,
S. M.
Hong
, “
Experimental and numerical study on shearing of a rod to produce long billets for cold forging
,”
J. Manuf. Process.
62
,
797
805
(
2021
).
39.
O.
Hering
,
F.
Kolpak
,
A. E.
Tekkaya
, “
Flow curves up to high strains considering load reversal and damage
,”
Int. J. Mater. Form.
12
,
955
972
(
2019
).
40.
D. S.
Fields
,
W. A.
Bachofen
, “
Determination of strain hardening characteristics by torsion testing
,”
Proc. Am Soc. Test. Mater. ASTM
57
,
1259
1272
(
1957
).
41.
L.
Anand
, “
Constitutive equations for hot-working of metal
,”
Int. J. Plast.
1
,
213
231
(
1985
).
42.
X. H.
Zhang
, “
Experimental and numerical study of magnesium alloy during hot working process
,” PhD thesis,
Shanghai Jiaotong University
,
2003
.
43.
P.
Koc
,
B.
Štok
, “
Computer-aided identification of the yield curve of a sheet metal after onset of necking
,”
Comput. Mater. Sci.
31
,
155
168
(
2004
).
44.
S.
Dziallach
,
W.
Bleck
,
M.
Blumbach
,
T.
Hallfeldt
, “
Sheet metal testing and flow curve determination under multiaxial conditions
,”
Adv. Eng. Mater.
9
,
987
994
(
2007
).
45.
Y. D.
Wang
,
S. H.
Xu
,
S. B.
Ren
,
H.
Wang
, “
An experimental-numerical combined method to determine the true constitutive relation of tensile specimens after necking
,”
Adv. Mater. Sci. Eng.
2016
,
1
21
(
2016
).
46.
I.
Jeník
,
P.
Kubík
,
F.
Šebek
,
J.
Hůlka
,
J.
Petruška
, “
Sequential simulation and neural network in the stress–strain curve identification over the large strains using tensile test
,”
Arch. Appl. Mech.
87
,
1077
1093
(
2017
).
47.
J.
Chen
,
Z.
Guan
,
C.
Yang
, “
Inverse determination of the flow curve in large range of strains for cylindrical tensile specimen
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
234
,
2256
2265
(
2020
).
48.
D. H.
Kweon
H,
J. W.
Kim
,
O.
Song
,
D.
Oh
, “
Determination of true stress-strain curve of type 304 and 316 stainless steels using a typical tensile test and finite element analysis
,”
Nucl. Engin. Technol.
53
,
647
656
(
2021
).
49.
G. R.
Johnson
,
W. H.
Cook
, “
A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures
,”
Proc. 7th. Inf. Sympo. Ballistics
21
,
541
547
(
1983
).
50.
A. S.
Khan
,
S.
Huang
, “
Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10−5-10−4 s-1
,”
Int. J. Plast.
8
,
397
424
(
1992
).
51.
A. S.
Khan
,
A.
Pandey
,
T.
Gnäupel-Herold
,
P. K.
Mishra
, “
Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures
,”
Int. J. Plast.
27
,
688
706
(
2011
).
52.
D. C.
Ludwigson
, “
Modified stress-strain relation for FCC metals and alloys
,”
Metall. Trans.
2
,
2825
2832
(
1971
).
53.
P. J.
Zerilli
,
R. W.
Armstrong
, “
Dislocation-mechanics-based constitutive relations for material dynamics calculations
,”
J. Appl. Phys.
61
,
1816
1825
(
1987
).
54.
G. Z.
Voyiadjis
,
A. H.
Almasri
, “
A physically based constitutive model for FCC metals with applications to dynamic hardness
,”
Mech. Mater.
40
,
549
563
(
2008
).
55.
S. R.
Bodner
,
Y.
Partom
, “
Constitutive equations for elastic-viscoplastic strain hardening materials
,”
J. Appl. Mech.
42
,
385
389
(
1975
).
56.
C. S.
Hartley
,
R.
Srinivasan
, “
Constitutive equations for large plastic deformation of metals
,”
J. Eng. Mater. Tec.
105
,
162
167
(
1983
).
57.
Y. S.
Kim
,
P. Q.
Tuan
,
C. I.
Kim
, “
New stress-strain model for identifying plastic deformation behavior of sheet materials
,”
J. Korea Soc. Precis. Eng.
34
,
273
279
(
2017
).
58.
A.
Rusinek
,
J.
Klepaczko
, “
Shear testing of sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress
,”
Int. J. Plast.
17
,
87
115
(
2001
).
59.
F. C.
Kocks
, “
Laws for work-hardening and low-temperature creep
,”
J. Eng. Mater. Technol.
98
,
76
85
(
1976
).
60.
K.
Zhao
,
L.
Wang
,
Y.
Chang
,
J
Yan
, “
Identification of post-necking stress–strain curve for sheet metals by inverse method
,”
Mech. Mater.
92
,
107
118
(
2016
).
61.
J. E.
Hockett
,
O. D.
Sherby
, “
Large strain deformation of polycrystalline metals at low homologous temperatures
,”
J. Mech. Phys. Solids
23
,
87
98
(
1975
).
62.
L.
Ji
,
H.
Chen
,
X.
Zhu
,
M.
Zheng
, “
A modified Hockett-Sherby model to simulate discontinuous yield behavior
,”
Mater. Sci. Indian. J.
10
,
299
305
(
2014
).
63.
E.
El-Magd
,
M.
Abouridouane
, “
Characterization, modelling and simulation of deformation and fracture behaviour of the light-weight wrought alloys under high strain rate loading
,”
Int. J. Impact Eng.
32
,
741
758
(
2006
).
64.
K.
Omer
,
S.
Kim
,
C.
Butcher
,
M.
Worswick
, “
Characterizing the constitutive properties of AA7075 for hot forming
,”
J. Phys. Conf. Series
896
,
012054
012062
(
2017
).
65.
J.
Bergström
,
M.
Boyce
, “
Large strain time-dependent behavior of filled elastomers
,”
Mech. Mater.
32
,
627
644
(
2000
).
66.
J.
Bergström
,
L.
Hilbert
, “
A constitutive model for predicting the large deformation thermomechanical behavior of fluoropolymers
,”
Mech. Mater.
37
,
899
913
(
2005
).
67.
G. Z.
Voyiadjis
,
Y.
Song
, “
A physically based constitutive model for dynamic strain aging in Inconel 718 alloy at a wide range of temperatures and strain rates
,”
Acta. Mech.
231
,
19
34
(
2020
).
68.
J. G.
Eom
,
M. C.
Kim
,
S. W.
Lee
,
H. Y.
Ryu
,
M. S.
Joun
, “
Evaluation of damage models by finite element prediction of fracture in cylindrical tensile test
,”
J. Nanosci. Nanotechnol.
14
,
8019
8023
(
2014
).
69.
M. S.
Joun
,
I. S.
Choi
,
J. G.
Eom
,
M. C.
Lee
, “
Finite element analysis of tensile testing with emphasis on necking
,”
Comput. Mater. Sci.
41
,
63
69
(
2007
).
70.
M.
Considère
,
Annales des Ponts et Chaussées
9
,
574
(
1885
).
71.
M. S.
Joun
,
M. C.
Lee
,
J. G.
Eom
, “
Intelligent metal forming simulation
,”
Int. Manuf. Sci. Eng. Conf.
44304
,
161
168
(
2011
).
72.
J. G.
Eom
,
W. J.
Chung
,
M. S.
Joun
, “
Comparison of rigid-plastic and elastoplastic finite element predictions of a tensile test of cylindrical specimens
,”
Key Eng. Mater.
622
,
611
616
(
2014
).
73.
M. S.
Joun
, “
Recent advances in metal forming simulation technology for automobile parts by AFDEX
,”
IOP Conf. Ser.: Mater. Sci. Eng.
834
,
12
16
(
2020
).
This content is only available via PDF.
You do not currently have access to this content.