An inexpensive and non-complex technique for achieving multiband and wide bandwidth on Grid Array Antenna (GAA) is presented in this work. By cutting a square slot on the ground plane of a conventional GAA at a determined distance from the center of the ground plane of a conventional GAA, wide and multiband GAA was achieved. Simulation results indicate that the impedance bandwidth covered by the antenna is from 23.54 GHz – 24.43 GHz, 27.81 GHz – 30.80 GHz and 32.67 GHz – 40.19 GHz with a gain of 15.44 dBi at 37 GHz. The bands covered by the antenna are essential for 5G millimeter-wave communications.
REFERENCES
1.
G.
Liu
and D.
Jiang
, “5G: Vision and requirements for mobile communication system towards year 2020
,” Chinese Journal of Engineering
, vol. 2016
, p. 8
, 2016
.2.
N.
Al-Falahy
and O. Y.
Alani
, “Millimetre wave frequency band as a candidate spectrum for 5G network architecture: a survey
,” Physical Communication
, vol. 32
, pp. 120
–144
, 2019
.3.
T. S.
Rappaport
, S.
Sun
, R.
Mayzus
, H.
Zhao
, Y.
Azar
, K.
Wang
, et al, “Millimeter wave mobile communications for 5G cellular: It will work!
,” IEEE access
, vol. 1
, pp. 335
–349
, 2013
.4.
H.
Marzouk
, M.
Ahmed
, and A.
Shaalan
, “A Novel Dual-Band 28/38 GHz AFSL MIMO Antenna for 5G Smartphone Applications
,” in Journal of Physics: Conference Series
, 2020
, p. 012025
.5.
Z.
Pi
and F.
Khan
, “An introduction to millimeter-wave mobile broadband systems
,” IEEE communications magazine
, vol. 49
, pp. 101
–107
, 2011
.6.
T.
Deckmyn
, M.
Cauwe
, D. V.
Ginste
, H.
Rogier
, and S.
Agneessens
, “Dual-band (28, 38) GHz coupled quarter-mode substrate-integrated waveguide antenna array for next-generation wireless systems
,” IEEE Transactions on Antennas and Propagation
, vol. 67
, pp. 2405
–2412
, 2019
.7.
E.
Sandi
and T.
Marani
, “Design of Multiband MIMO Antenna for 5G Millimeterwave Application
,” in IOP Conference Series: Materials Science and Engineering
, 2020
, p. 012154
.8.
Z.
Khan
, M. H.
Memon
, S. U.
Rahman
, M.
Sajjad
, F.
Lin
, and L.
Sun
, “A Single-Fed Multiband Antenna for WLAN and 5G Applications
,” Sensors
, vol. 20
, p. 6332
, 2020
.9.
S.
Painam
, V. S.
Anumala
, K.
Painam
, K. C.
Tatikonda
, S.
Miriyala
, and P.
Prasad
, “Triple-UWB Millimeter-wave MIMO Antenna with Improved Isolation for 5G Wireless Applications
,” in 2019 IEEE Indian Conference on Antennas and Propogation (InCAP)
, 2019
, pp. 1
–5
.10.
M. L.
Hakim
and M.
Faisal
, “Design and Simulation of a Multiband Millimeter Wave Microstrip Patch Antenna Array for 5G Wireless Communication
,” in 2019 22nd International Conference on Computer and Information Technology (ICCIT)
, 2019
, pp. 1
–5
.11.
G.
Xu
, H.
Luan
, H.-L.
Peng
, Y.-P.
Zhang
, and W.-Y.
Yin
, “A Microstrip Grid Array Antenna for Dual Band Applications
,” in 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting
, 2018
, pp. 667
–668
.12.
Y.-Y.
Hu
, H.
Xu
, H.
Sun
, and S.
Sun
, “A high-gain rectenna based on grid-array antenna for RF power harvesting applications
,” in 2017 10th Global Symposium on Millimeter-Waves
, 2017
, pp. 161
–162
.13.
Z.
Chen
, L.
Zhang
, B.
Zhang
, and Y. P.
Zhang
, “A multiport microstrip grid array structure
,” IEEE Transactions on Antennas and Propagation
, vol. 64
, pp. 4953
–4958
, 2016
.14.
M. Sani
Yahya
and S.
Rahim
, “15 GHz grid array antenna for 5G mobile communications system
,” Microwave and Optical Technology Letters
, vol. 58
, pp. 2977
–2980
, 2016
.15.
W. Y.
Yong
and A. A.
Glazunov
, “High Gain, Wideband Grid Array Antenna for 28 GHz 5G Base Station
,” in 2019 13th European Conference on Antennas and Propagation (EuCAP)
, 2019
, pp. 1
–5
.16.
Z.
Ahmed
, P.
McEvoy
, and M. J.
Ammann
, “Comparison of grid array and microstrip patch array antennas at 28 GHz
,” in 2018 IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies (IMWS-5G)
, 2018
, pp. 1
–3
.17.
Z.
Chen
and Y. P.
Zhang
, “FR4 PCB grid array antenna for millimeter-wave 5G mobile communications
,” in Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), 2013 IEEE MTT-S International
, 2013
, pp. 1
–3
.18.
Z.
Chen
and Y. P.
Zhang
, “A 24 GHz microstrip grid array antenna excited by coaxial-fed slot
,” in Electronics Packaging Technology Conference (EPTC), 2014 IEEE 16th
, 2014
, pp. 469
–471
.19.
Z.
Lin
, Y. P.
Zhang
, and Y. L.
Lu
, “A 24-GHz microstrip grid array antenna
,” in Antennas and Propagation Society International Symposium (APSURSI), 2012 IEEE
, 2012
, pp. 1
–2
.20.
M.
Sun
, Y. P.
Zhang
, D.
Liu
, K. M.
Chua
, and L. L.
Wai
, “A ball grid array package with a microstrip grid array antenna for a single-chip 60-GHz receiver
,” Antennas and Propagation, IEEE Transactions on
, vol. 59
, pp. 2134
–2140
, 2011
.21.
G.
Xu
, H.-L.
Peng
, Z.
Shao
, L.
Zhou
, Y.
Zhang
, and W.-Y.
Yin
, “Dual-Band Differential Shifted-Feed Microstrip Grid Array Antenna With Two Parasitic Patches
,” IEEE Transactions on Antennas and Propagation
, vol. 68
, pp. 2434
–2439
, 2019
.22.
L.
Zhang
, W.
Zhang
, and Y.
Zhang
, “Microstrip grid and comb array antennas
,” Antennas and Propagation, IEEE Transactions on
, vol. 59
, pp. 4077
–4084
, 2011
.23.
L.
Zhang
, Y. P.
Zhang
, and Y.
Lu
, “30-dBi gain microstrip grid array antenna at 24 GHz on a single-layer substrate
,” in Antennas and Propagation Society International Symposium (APSURSI), 2013 IEEE
, 2013
, pp. 1214
–1215
.
This content is only available via PDF.
©2023 Authors. Published by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.