An inexpensive and non-complex technique for achieving multiband and wide bandwidth on Grid Array Antenna (GAA) is presented in this work. By cutting a square slot on the ground plane of a conventional GAA at a determined distance from the center of the ground plane of a conventional GAA, wide and multiband GAA was achieved. Simulation results indicate that the impedance bandwidth covered by the antenna is from 23.54 GHz – 24.43 GHz, 27.81 GHz – 30.80 GHz and 32.67 GHz – 40.19 GHz with a gain of 15.44 dBi at 37 GHz. The bands covered by the antenna are essential for 5G millimeter-wave communications.

1.
G.
Liu
and
D.
Jiang
, “
5G: Vision and requirements for mobile communication system towards year 2020
,”
Chinese Journal of Engineering
, vol.
2016
, p.
8
,
2016
.
2.
N.
Al-Falahy
and
O. Y.
Alani
, “
Millimetre wave frequency band as a candidate spectrum for 5G network architecture: a survey
,”
Physical Communication
, vol.
32
, pp.
120
144
,
2019
.
3.
T. S.
Rappaport
,
S.
Sun
,
R.
Mayzus
,
H.
Zhao
,
Y.
Azar
,
K.
Wang
, et al, “
Millimeter wave mobile communications for 5G cellular: It will work!
,”
IEEE access
, vol.
1
, pp.
335
349
,
2013
.
4.
H.
Marzouk
,
M.
Ahmed
, and
A.
Shaalan
, “
A Novel Dual-Band 28/38 GHz AFSL MIMO Antenna for 5G Smartphone Applications
,” in
Journal of Physics: Conference Series
,
2020
, p.
012025
.
5.
Z.
Pi
and
F.
Khan
, “
An introduction to millimeter-wave mobile broadband systems
,”
IEEE communications magazine
, vol.
49
, pp.
101
107
,
2011
.
6.
T.
Deckmyn
,
M.
Cauwe
,
D. V.
Ginste
,
H.
Rogier
, and
S.
Agneessens
, “
Dual-band (28, 38) GHz coupled quarter-mode substrate-integrated waveguide antenna array for next-generation wireless systems
,”
IEEE Transactions on Antennas and Propagation
, vol.
67
, pp.
2405
2412
,
2019
.
7.
E.
Sandi
and
T.
Marani
, “
Design of Multiband MIMO Antenna for 5G Millimeterwave Application
,” in
IOP Conference Series: Materials Science and Engineering
,
2020
, p.
012154
.
8.
Z.
Khan
,
M. H.
Memon
,
S. U.
Rahman
,
M.
Sajjad
,
F.
Lin
, and
L.
Sun
, “
A Single-Fed Multiband Antenna for WLAN and 5G Applications
,”
Sensors
, vol.
20
, p.
6332
,
2020
.
9.
S.
Painam
,
V. S.
Anumala
,
K.
Painam
,
K. C.
Tatikonda
,
S.
Miriyala
, and
P.
Prasad
, “
Triple-UWB Millimeter-wave MIMO Antenna with Improved Isolation for 5G Wireless Applications
,” in
2019 IEEE Indian Conference on Antennas and Propogation (InCAP)
,
2019
, pp.
1
5
.
10.
M. L.
Hakim
and
M.
Faisal
, “
Design and Simulation of a Multiband Millimeter Wave Microstrip Patch Antenna Array for 5G Wireless Communication
,” in
2019 22nd International Conference on Computer and Information Technology (ICCIT)
,
2019
, pp.
1
5
.
11.
G.
Xu
,
H.
Luan
,
H.-L.
Peng
,
Y.-P.
Zhang
, and
W.-Y.
Yin
, “
A Microstrip Grid Array Antenna for Dual Band Applications
,” in
2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting
,
2018
, pp.
667
668
.
12.
Y.-Y.
Hu
,
H.
Xu
,
H.
Sun
, and
S.
Sun
, “
A high-gain rectenna based on grid-array antenna for RF power harvesting applications
,” in
2017 10th Global Symposium on Millimeter-Waves
,
2017
, pp.
161
162
.
13.
Z.
Chen
,
L.
Zhang
,
B.
Zhang
, and
Y. P.
Zhang
, “
A multiport microstrip grid array structure
,”
IEEE Transactions on Antennas and Propagation
, vol.
64
, pp.
4953
4958
,
2016
.
14.
M. Sani
Yahya
and
S.
Rahim
, “
15 GHz grid array antenna for 5G mobile communications system
,”
Microwave and Optical Technology Letters
, vol.
58
, pp.
2977
2980
,
2016
.
15.
W. Y.
Yong
and
A. A.
Glazunov
, “
High Gain, Wideband Grid Array Antenna for 28 GHz 5G Base Station
,” in
2019 13th European Conference on Antennas and Propagation (EuCAP)
,
2019
, pp.
1
5
.
16.
Z.
Ahmed
,
P.
McEvoy
, and
M. J.
Ammann
, “
Comparison of grid array and microstrip patch array antennas at 28 GHz
,” in
2018 IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies (IMWS-5G)
,
2018
, pp.
1
3
.
17.
Z.
Chen
and
Y. P.
Zhang
, “
FR4 PCB grid array antenna for millimeter-wave 5G mobile communications
,” in
Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), 2013 IEEE MTT-S International
,
2013
, pp.
1
3
.
18.
Z.
Chen
and
Y. P.
Zhang
, “
A 24 GHz microstrip grid array antenna excited by coaxial-fed slot
,” in
Electronics Packaging Technology Conference (EPTC), 2014 IEEE 16th
,
2014
, pp.
469
471
.
19.
Z.
Lin
,
Y. P.
Zhang
, and
Y. L.
Lu
, “
A 24-GHz microstrip grid array antenna
,” in
Antennas and Propagation Society International Symposium (APSURSI), 2012 IEEE
,
2012
, pp.
1
2
.
20.
M.
Sun
,
Y. P.
Zhang
,
D.
Liu
,
K. M.
Chua
, and
L. L.
Wai
, “
A ball grid array package with a microstrip grid array antenna for a single-chip 60-GHz receiver
,”
Antennas and Propagation, IEEE Transactions on
, vol.
59
, pp.
2134
2140
,
2011
.
21.
G.
Xu
,
H.-L.
Peng
,
Z.
Shao
,
L.
Zhou
,
Y.
Zhang
, and
W.-Y.
Yin
, “
Dual-Band Differential Shifted-Feed Microstrip Grid Array Antenna With Two Parasitic Patches
,”
IEEE Transactions on Antennas and Propagation
, vol.
68
, pp.
2434
2439
,
2019
.
22.
L.
Zhang
,
W.
Zhang
, and
Y.
Zhang
, “
Microstrip grid and comb array antennas
,”
Antennas and Propagation, IEEE Transactions on
, vol.
59
, pp.
4077
4084
,
2011
.
23.
L.
Zhang
,
Y. P.
Zhang
, and
Y.
Lu
, “
30-dBi gain microstrip grid array antenna at 24 GHz on a single-layer substrate
,” in
Antennas and Propagation Society International Symposium (APSURSI), 2013 IEEE
,
2013
, pp.
1214
1215
.
This content is only available via PDF.
You do not currently have access to this content.