The palm oil industry is a major source of water pollution in Southeast Asia. Its wastewater normally contains a complex mixture of organic matter and is high in chemical oxygen demand, biochemical oxygen demand and suspended solids. Thus, this study aims to screen the phytotoxic effects of different concentrations of palm oil mill effluent (POME). The phytotoxicity of POME was studied using mung beans (Vigna radiata), whereby the seedling growth and germination were monitored. In this study, mung beans were allowed to germinate under hydroponics conditions in different concentrations of POME solution. The relative root length, shoot length, percentage of germination and the germination index were evaluated. After 5 days of germination, results from phytotoxicity analysis suggest that the seedling growth declined with the increase in concentration of POME solution. POME at a concentration of 100% (v/v) has resulted in the worst seedling growth condition with 60% of seed germination, null shoot length, root elongation at 1.02 cm, wet biomass at 0.19 g and the lowest germination index at 7.98%. Mung beans might have experienced stress conditions due to the excessive amount of complex and highly biodegradable organic matter and pollutants in POME which stunted the growth of plants. Overall, phytotoxicity assessment of POME using V. radiata as a plant receptor is such a simple technique and applicable to evaluate the effect of chemical pollution of effluent on seed growth.

1.
USDA Foreign Agricultural Service
,
Oilseeds: World Markets and Trade. Available at
https://www.fas.usda.gov/data/oilseeds-world-markets-and-trade
2.
Malaysia Palm Oil Council (MPOC), Malaysian Palm Oil Sector Performance in 2020 and Market Opportunities. Available at
http://mpoc.org.my/malaysian-palm-oil-sector-performance-in-2020-and-market-opportunities/
3.
P.
Kumaran
,
D.
Hephzibah
,
R.
Sivasankari
,
N.
Saifuddin
,
A.H.
Shamsuddin
,
Renew. Sustain. Energy Rev.
56
,
929
940
(
2016
)
4.
A.
Rathore
,
N.
Tiwari
,
S.
Jain
,
A.
Jain
,
Int. J. Adv. Sci. Eng. Technol.
6(
4)
,
23
26
(
2018
)
5.
K.
Getter
,
Plant phytotoxicity in the greenhouse. Available at
https://www.canr.msu.edu/news/plant_phytotoxicity_in_the_greenhouse
6.
U.
Song
,
H.E.
Kim
,
J Ecology Environ.
40
,
14
(
2016
)
7.
J.
Jumadi
,
A.
Kamari
,
S.T.S.
Wong
,
IOP Conf. Ser.: Mater. Sci. Eng
.
980(
1)
,
012076
(
2020
)
8.
APHA
, Standard Methods for the Examination of Water and Wastewater (
Washington
,
DC, USA
,
2012
) pp
981
9.
A.
Yadav
,
A.
Raj
,
D.
Purchase
,
L.F.R.
Ferreira
,
G.D.
Saratale
,
R.N.
Bharagava
,
Chemosphere
224
,
324
332
(
2019
)
10.
B.
Ravindran
,
S. K. Sheena
Kumari
,
T. A.
Stenstrom
,
F.
Bux
,
Environ. Technol.
37(
14)
,
1782
1789
(
2016
)
11.
A.
Hannouche
,
G.
Chebbo
,
G.
Ruban
,
B.
Tassin
,
B.J.
Lemaire
,
C.
Joanis
,
Water Sci. Technol.
64(
12)
,
2445
2452
(
2011
)
12.
K.
Aung
,
Y.
Jiang
,
S.Y.
He
,
Plant J.
93(
4)
,
771
780
(
2018
).
13.
V.I.
Polonskiy
,
D.E.
Polonskaya
,
Russ. Agricult. Sci.
41
,
120
122
(
2015
).
14.
S.K.
Loh
, M.E. L,
M.
Ngatiman
,
Food and Bioprod. Processing
117
,
95
104
(
2019
)
15.
M.
Wang
,
Q.
Zheng
,
Q.
Shen
,
S.
Guo
,
Int J. Mol, Sci.
14(
4)
,
7370
7390
(
2013
)
16.
C.
Alcaraz-Lopez
,
M.
Botia
,
C.F.
Alcaraz
,
F.
Riquelme
,
J. Plant Physiol.
160(
12)
,
1441
1226
(
2003
)
17.
I.
Cakmak
,
A.M.
Yazici
,
Better Crops with Plant Food
94(
2)
,
23
25
(
2010
)
18.
S.A.
Kim
,
M.L.
Guerinot
,
FEBS Lett.
581(
12)
,
2273
2280
(
2007
)
19.
P.O.
Oviasogie
,
A.E.
Aghimien
,
Glob. J. Pure Appl. Sci.
9(
1)
,
71
80
(
2003
)
20.
M.
Du
,
J.
Xie
,
B.
Gong
,
X.
Xu
, W. T.,
X.
Li
,
C.
Li
,
M.
Xie
,
Food Hydrocoll.
76
,
131
140
(
2018
)
21.
K.E.
Wellen
,
C.B.
Thompson
,
Mol, Cell
40(
2)
,
323
332
(
2010
)
This content is only available via PDF.
You do not currently have access to this content.