In our day-to-day terms, stress is an emotion that people face when they are highly loaded and experience difficulties while fulfilling daily demands. Short-term stress can be advantageous. However, long-term stress affects individual health significantly, such as cardiovascular disease, heart disease, high blood pressure, heart attack, and stroke. It can also lead to depression, anxiety, and personality disorders. Consequently, stress recognition becomes helpful to control health-related issues generated from stress. Brain signal-based emotion detection is one of the best methods for detecting human emotion and stress, which leads to an accurate result. This brain wave or signal-based system can help find the different disorders and disabilities with the EEG signal-based system. It can help to detect human mental stress & emotion with sentiment analysis. Hence, there is a need for a system that is accurate, precise, and reliable. With this motivation to achieve a more precise and reliable system, this research aims to detect real-time stress based on Electroencephalography (EEG) signals. EEG signals serve as a reliable tool to measure pressure using non-invasive ways.

1.
A. E. U. H. N. V, C. G. V, K. C. G
, and
A. E.
Set-up
, “
Classification of Stress into Emotional, Mental, Physical and No-Stress States Using Electroencephalogram Signal Analysis
,” pp.
12
15
,
2017
.
2.
N.
Sharma
and
T.
Gedeon
, “
Objective measures, sensors and computational techniques for stress recognition and classification : A survey
,”
Comput. Methods Programs Biomed.
, vol.
108
, no.
3
, pp.
1287
1301
,
2012
.
3.
S.
Vaid
, “
EEG SIGNAL ANALYSIS FOR BCI INTERFACE : A REVIEW
,”
2015
.
4.
K.
Shahzabeen
,
A.
Wahab
,
H. A.
Majid
, and
B.
Crüts
, “
Analyzing Brain Activity in Understanding Cultural and Language Interaction for Depression and Anxiety
,” vol.
27
, no. Pacling, pp.
299
305
,
2011
.
5.
D.
Singh
, “
Human Emotion Recognition System
,” no. August 2012,
2017
.
6.
A.
Saidatul
,
M. P.
Paulraj
,
S.
Yaacob
, and
N. F. M.
Nasir
, “
Automated System for Stress Evaluation Based on EEG Signal : A Prospective Review
,” pp.
167
171
,
2011
.
7.
J.
Virgili-gomá
,
R.
Gil
,
T.
Guilera
,
I.
Batalla
,
J.
Soler-gonzález
, and
R.
García
, “
Method for Improving EEG Based Emotion Recognition by Combining It with Synchronized Biometric and Eye Tracking Technologies in a Non-invasive and Low Cost Way
,” vol.
10
, no. August, pp.
1
14
,
2016
.
8.
T.
Khalil
, “
A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning
,” pp.
372
378
,
2014
.
9.
J.
Zhai
,
A. B.
Barreto
,
C.
Chin
, and
C.
Li
, “
Realization of Stress Detection using Psychophysiological Signals for Improvement of Human-Computer Interactions
,” pp.
415
420
,
2005
.
10.
L.
Nahar
, “
Sentiment Analysis and Emotion Extraction : A Review of Research Paradigm
,”
2019 1st Int. Conf. Adv. Sci. Eng. Robot. Technol.
, vol.
2019
, no. Icasert, pp.
1
8
,
2019
.
11.
S.
Koldijk
and
M. A.
Neerincx
, “
Detecting work stress in offices by combining unobtrusive sensors
,” vol.
3045
, no. c,
2016
.
12.
S. V
Pandey
, “
A Study of Sentiment Analysis Task and It ’ s Challenges
,”
2019 IEEE Int. Conf. Electr. Comput. Commun. Technol.
, pp.
1
5
.
13.
C.
Viegas
and
R.
Maxion
, “
Towards Independent Stress Detection : a Dependent Model using Facial Action Units
,”
2018 Int. Conf. Content-Based Multimed. Index.
, pp.
1
6
,
2018
.
14.
A. R.
Subhani
,
W.
Mumtaz
,
M.
Naufal
, and
N.
Kamel
, “
Machine Learning Framework for the Detection
,” vol.
3536
, no. c, pp.
1
11
,
2017
.
15.
S.
Buyukgoze
, “
The brain-computer interface
,” no. January 2019,
2020
.
16.
C.
Lin
,
J.
King
,
J.
Fan
,
A.
Appaji
, and
M.
Prasad
, “
The Influence of Acute Stress on Brain Dynamics During Task Switching Activities
,” pp.
3249
3255
,
2018
.
17.
V. J.
Madhuri
,
M. R.
Mohan
, and
R.
Kaavya
, “
Stress Management Using Artificial Intelligence
,” pp.
54
57
,
2013
.
18.
N.
Sulaiman
,
S.
Armiza
,
M.
Aris
,
N.
Hayatee
, and
U. T.
Mara
, “
EEG-based Stress Features Using Spectral Centroids Technique and k-Nearest Neighbor Classifier
,”
2011
.
19.
M.
Abo-Zahhad
,
S. M.
Ahmed
, and
S. N.
Abbas
, “
A New EEG Acquisition Protocol for Biometric Identification Using Eye Blinking Signals
,”
Int. J. Intell. Syst. Appl.
, vol.
7
, no.
6
, pp.
48
54
,
2015
.
20.
R. Arefi
Shirvan
,
S. K.
Setarehdan
, and
A. Motie
Nasrabadi
, “
Classification of Mental Stress Levels by Analyzing fNIRS Signal Using Linear and Non-linear Features
,”
Int. Clin. Neurosci. J.
, vol.
5
, no.
2
, pp.
55
61
,
2018
.
21.
S. M. R.
Islam
,
A.
Sajol
,
X.
Huang
, and
K. L.
Ou
, “
Feature extraction and classification of EEG signal for different brain control machine
,”
2016 3rd Int. Conf. Electr. Eng. Inf. Commun. Technol. iCEEiCT 2016
,
2017
.
22.
A.
Pedroni
,
A.
Bahreini
, and
N.
Langer
, “
Automagic: Standardized preprocessing of big EEG data
,”
Neuroimage
, vol.
200
, no. December
2018
, pp.
460
473
,
2019
.
23.
C.
Science
,
S. A.
Hosseini
,
M. A.
Khalilzadeh
, and
M. B.
Naghibi-sistani
, “
Emotional Stress States
,” pp.
60
63
,
2010
.
24.
N.
Sulaiman
,
M. N.
Taib
,
S.
Lias
,
Z. H.
Murat
,
S. A. M.
Aris
, and
N. H. A.
Hamid
, “
Novel methods for stress features identification using EEG signals
,”
Int. J. Simul. Syst. Sci. Technol.
, vol.
12
, no.
1
, pp.
27
33
,
2011
.
25.
K. S.
Rahnuma
,
A.
Wahab
,
N.
Kamaruddin
, and
H.
Majid
, “
EEG ANALYSIS FOR UNDERSTANDING STRESS BASED ON AFFECTIVE MODEL BASIS FUNCTION
,” pp.
592
597
,
2011
.
26.
B. S.
Zheng
,
M.
Murugappan
,
S.
Yaacob
, and
S.
Murugappan
, “
Human Emotional Stress Analysis through Time Domain Electromyogram Features
,” pp.
172
177
,
2013
.
27.
C.
Yang
,
R. Le Bouquin
Jeannes
,
J. J.
Bellanger
, and
H.
Shu
, “
A new strategy for model order identification and its application to transfer entropy for EEG signals analysis
,”
IEEE Trans. Biomed. Eng.
, vol.
60
, no.
5
, pp.
1318
1327
,
2013
.
28.
N.
Dahal
,
D.
Nandagopal
,
B.
Cocks
,
R.
Vijayalakshmi
,
N.
Dasari
, and
P.
Gaertner
, “
TVAR modeling of EEG to detect audio distraction during simulated driving
,”
J. Neural Eng.
, vol.
11
, no.
3
,
2014
.
29.
M.
Khezri
,
M.
Firoozabadi
, and
A. R.
Sharafat
, “
Ac ce p te d cr t
,”
Comput. Methods Programs Biomed.
,
2015
.
30.
A.
Patil
,
A.
Panat
, and
S. A.
Ragade
, “
Classification of Human Emotions from Electroencephalogram using Support Vector Machine
,” pp.
404
408
,
2015
.
31.
A.
Khorshidtalab
, “
EEG Signal Classification for Real-Time Brain-Computer Interface Applications : A Review
,” no. May, pp.
17
19
,
2011
.
32.
K.
Sailunaz
and
R.
Alhajj
, “
Emotion and sentiment analysis from Twitter text
,”
J. Comput. Sci.
, vol.
36
, p.
101003
,
2019
.
33.
P.
Tiwari
 et al,
Sentiment Analysis for Airlines Services Based on Twitter Dataset
.
Elsevier Inc
.,
2019
.
34.
F. A.
Shaqra
,
R.
Duwairi
, and
M.
Al-Ayyoub
, “
Recognizing emotion from speech based on age and gender using hierarchical models
,”
Procedia Comput. Sci.
, vol.
151
, no.
2018
, pp.
37
44
,
2019
.
35.
O.
Alqaryouti
,
N.
Siyam
,
A. A.
Monem
, and
K.
Shaalan
, “
Aspect-based sentiment analysis using smart government review data
,”
Appl. Comput. Informatics
,
2019
.
36.
D.
Gamal
,
M.
Alfonse
,
E. M.
Elhorbaty
, and
A.-B. M.
Salem
, “
An Evaluation of Sentiment Analysis on Smart Entertainment and Devices Reviews
,”
Inf. Theor. Appl.
, vol.
26
, no.
2
, pp.
147
164
,
2019
.
37.
T.
Olagunju
,
O.
Oyebode
, and
R.
Orji
, “
Exploring Key Issues Affecting African Mobile eCommerce Applications Using Sentiment and Thematic Analysis
,”
IEEE Access
, vol.
8
, no. June, pp.
114475
114486
,
2020
.
38.
Z.
Li
,
R.
Li
, and
G.
Jin
, “
Sentiment analysis of danmaku videos based on naïve bayes and sentiment dictionary
,”
IEEE Access
, vol.
8
, pp.
75073
75084
,
2020
.
39.
S.
Kausar
,
X. U.
Huahu
, and
W.
Ahmad
, “
A Sentiment Polarity Categorization Technique for Online Product Reviews
,” vol.
8
,
2020
.
40.
S. S. and P. K.V.
, “
Sentiment analysis of malayalam tweets using machine learning techniques
,”
ICT Express
, no.
xxxx
, pp.
2
7
,
2020
.
41.
L.
Guo
,
Y.
Wu
,
L.
Zhao
,
T.
Cao
,
W.
Yan
, and
X.
Shen
, “
Classification of Mental Task From EEG Signals Using Immune Feature Weighted Support Vector Machines
,” vol.
47
, no.
5
, pp.
866
869
,
2011
.
This content is only available via PDF.
You do not currently have access to this content.