The government has implemented a self-quarantine policy to prevent the spread of the coronavirus. It means prohibiting the gathering of many people. The Ministry of Education and Culture implements an online school policy, so the students still receive an education. At first, people thought that this policy was appropriate and helpful to understand technology better. In any case, people started to complain about almost the different impacts they felt, such as share expenses and stress on online schools. People complain about their problems on social media, Twitter. Hence, it is conceivable to recognize online learning problems through Twitter by categorizing them into two categories, technical and psychological. This scientific research is to classify online school problems to find out the most problem need to be fixed to improve online school quality. The classification of online learning problems uses the text mining method with the Support Vector Machine (SVM) algorithm. SVM algorithm is used to maximized the separation 2 class to decrease errors. The data used in this study were 549 documents with 52% of psychological problems and 48% of technical issues. Using the K-Fold Cross-validation method with K = 10, the average of the training accuracy data is 99.811%, and the average of the testing data accuracy is 90.3%. In addition, the results of the Pres’s Q test show that the model is consistent in predicting the testing data. This research indicates that the Support Vector Machine method is suitable to classify data on online learning problems.

1.
C.
Riyana
,
Produksi Bahan Pembelajaran Berbasis Online
[Production of Online Based Learning Materials], (
Universitas Terbuka
,
Tangerang Selatan
,
2019
). [Bahasa Indonesia].
2.
R.
Agoestyowati
,
Jurnal Aksara Publik
4
(
3
),
117
(
2020
). [Bahasa Indonesia].
3.
K.
Bergstrand
and
S. V.
Savage
,
Teaching Sociology
41
(
3
).
294
(
2012
).
4.
R.
Feldman
and
J.
Sanger
,
The Text mining Handbook: Advanced Approaches to Analyzing Unstructured Data
, (
Cambridge University Press
,
Cambridge
,
2007
).
5.
T.
Joachims
, “Text categorization with Support Vector Machines: learning with many relevant features.”, in
Proceeding of the 10th European Conference on Machine Learning
(
ECML
,
1998
), pp.
137
142
.
6.
A.
Purwanto
,
R.
Pramono
,
M.
Asbari
,
B.
Santoso
,
L.
Mayesti
,
C. C.
Hyun
, and
R. S.
Putri
,
Journal of Education, Psycology, and Conseling
2
(
1
),
2716
(
2020
).
7.
A.
Sadikin
and
A.
Hamidah
,
Jurnal Ilmiah Pendidikan Biologi
6
(
2
),
214
(
2020
). [Bahasa Indonesia].
8.
E. S.
Negara
,
R.
Andryani
, and
P. H.
Saksono
,
Jurnal Informatika, Sistem Kendali, dan Komputer
10
(
1
),
27
36
(
2016
). [Bahasa Indonesia].
9.
R.
Melita
,
V.
Amrizal
,
H. B.
Suseno
, and
T. R.
Dirjam
,
Jurnal Teknik Informatika
11
(
2
),
149
(
2018
). [Bahasa Indonesia].
10.
S.
Robertson
,
Journal of Documentation
60
(
5
),
503
(
2004
).
11.
M. Nurjannah
,
Hamdani
, and
I. F.
Astuti
,
Jurnal Informatika Mulawarman
8
(
3
),
110
(
2013
). [Bahasa Indonesia].
12.
S. R.
Gunn
,
Support Vector Machine for Classification and Regression
(
Southampton
,
University of Southampton
,
1998
).
13.
L. S.
Meyers
,
G.
Gamst
, and
A. J.
Guarino
,
Applied Multivariate Research
, 3rd Edition (
SAGE Publication
,
New York
,
2016
).
14.
M. M. F.
Tempola
and
A.
Khairan
,
Jurnal Teknologi Informasi dan Ilmu Komputer
5
(
5
),
577
584
(
2018
). [Bahasa Indonesia].
15.
S.
Pramana
,
B.
Yuniarto
,
S.
Mariyah
,
I.
Santoso
, and
R.
Nooraeni
,
Data Mining dengan R Konsep Serta Implementasi
[Data Mining with R Concept and Implementation.] (
InMedia
,
Jakarta
,
2018
). [Bahasa Indonesia].
16.
J.
Han
and
M.
Kamber
,
Data Mining Concept and Techniques
(
Morgan Kauffman
,
San Fransisco
,
2006
).
17.
K.
Alfadistya
, “
Analisis sentimen terhadap ulasan pengguna jasa transportasi online pada media sosial twitter menggunakan metode support vector machine [Sentiment analysis on reviews of online transportation service users on twitter social media using the support vector machine method]
,” Bachelor Thesis,
Universitas Airlangga
,
Surabaya
,
2019
. [Bahasa Indonesia].
This content is only available via PDF.
You do not currently have access to this content.