In regression analysis, not all pattern of regression curve is known due to absence of prior information about the kind of relationship between response and predictor variable. In this case, nonparametric regression becomes an alternative solution since there is no assumption about parametric form. There are several functions in nonparametric regression one of which is truncated spline that is more flexible to fit the data, good at visual interpretation, and able to handle data that have changed behavior at certain subintervals. Moreover, some application involves more than one response variables that are correlated between responses. Therefore, this study aims to obtain the curve estimation of truncated spline estimators on bi-response nonparametric regression along with estimation of error variance-covariance matrix. The curve estimation of the truncated spline estimator was obtained by Weighted Least Square (WLS) optimization with Generalized Cross Validation (GCV) as optimal knot point selection method. Then, the curve estimation of the model was applied to a real dataset of the 2019 Human Development Index (HDI) and Gender Development Index (GDI) in East Java Province, Indonesia. HDI and GDI become indicators of Sustainable Development Goals (SDGs) achievement, particularly social and economic pillars. An adequate coefficient determination from the best model indicates that the model provides good performance in modeling the data.

1.
W.
Hardle
,
Applied Nonparametric Regression (Econometric Society Monographs)
(
Cambridge Univresity Press
,
Cambridge
,
1990
).
2.
R. L.
Eubank
,
Nonparametric Regression and Spline Smoothing 2nd Ed
. (
Marcel Dekker
,
Inc.,New York
,
1999
).
3.
G.
Budak
and
H.
Oru
,
Mathematics
8
(
10
),
17
70
(
2020
).
4.
R. Du and H.
Yamada
,
Mathematics
8
(
9),18-39
(
2020
).
5.
H.
Nurcahayani
,
I. N.
Budiantara
, and
I.
Zain
, “Nonparametric truncated spline regression on modelling mean years schooling of regencies in Java.” in AIP Conference Proceedings 2194, (
AIP Publishing
,
Melville, NY
,
2019
).
6.
W.
Yu
,
Y.
Yong
,
G.
Guan
,
Y.
Huang
,
W.
Su
W, and
C.
Cui
,
Mathematics
7
(
9),1-15
(
2019
).
7.
R.
Pane
,
I. N.
Budiantara
,
I.
Zain
, and
B. W.
Otok
,
Appl Math Sci.
8
(
102
),
5053
5064
(
2014
).
8.
M.
Bilodeau
,
Can J Stat
20
(
3
),
257
269
(
1992
).
9.
D.
Fitriana
, “
Pengujian Hipotesis Parsial pada Regresi Semiparametrik Spline Truncated (Aplikasi: Data Angka Harapan Hidup di Indonesia) [Partial Hypothesis Testing on Truncated Spline Semiparametric Regression (Application: Life Expectancy Data in Indonesia)]
”, Thesis,
Institut Teknologi Sepuluh Nopember Surabaya
,
2017
. [ Bahasa Indonesia].
10.
G.
Zhao
and
Y.
Ma
,
Stat Probab Lett.
116
,
72
79
(
2016
).
11.
N.
Chamidah
and
T.
Saifudin
,
Appl Math Sci.
7
(
40
),
1839
1847
(
2013
).
12.
J.
Geller
and
M. H.
Neumann
,
J. Nonparametric Stat.
30
(
1
),
1
27
(
2018
).
13.
C. K.
Syengo
,
S.
Pyeye
,
G. O.
Orwa
, and
R. O.
Odhiambo
,
Open J. Stat.
6
,
1085
1097
(
2016
).
14.
N.
Chamidah
,
I. N.
Budiantara
,
S.
Sunaryo
, and
I.
Zain
,
J. Math Stat.
8
(
3
),
342
347
(
2014
).
15.
H.
Nurcahayani
,
I. N.
Budiantara
, and
I.
Zain
,
Mathematics
9
(
10),11-41
(
2021
).
16.
H.
Nurcahayani
,
I. N.
Budiantara
, and
I.
Zain
, “
The semiparametric regression curve estimation by using mixed truncated spline and fourier series model
.” in
AIP Conference Proceedings 2329,
(
AIP Publishing, Melville, NY
,
2021
).
17.
R.
Hidayat
,
I. N.
Budiantara
,
B. W.
Otok
, and
V.
Ratnasari
,
Commun Stat - Theory Methods
0
(
0
),
1
12
(
2020
).
18.
M. A. D.
Octavanny
,
I. N.
Budiantara
,
H.
Kuswanto
, and
D. P.
Rahmawati
,
Abstr. Appl. Anal.
2020
, (
2020
).
19.
I. N.
Budiantara
,
V.
Ratnasari
,
M.
Ratna
, and
I.
Zain
,
Appl. Math. Sci.
9
,
6083
6094
(
2015
).
20.
Sifriyani
,
I. N.
Budiantara
,
S. H.
Kartiko
, and Gunardi,
Int. J. Sci. Basic Appl. Res.
46
(
1
),
123
142
(
2019
).
21.
Sifriyani
,
S. H.
Kartiko
,
I. N.
Budiantara
, and Gunardi,
Songklanakarin J. Sci. Technol.
40
(
4
),
909
920
(
2018
).
22.
B.
Lestari
,
Fatmawati, and I. N. Budiantara, Songklanakarin J. Sci. Technol.
42
(
3
) ,
533
548
(
2020
).
23.
A. A. R.
Fernandes
,
Int. J. Soc. Relev. Concern.
4
(
9
),
26
32
(
2016
).
24.
W.
Wibowo
,
S.
Haryatmi
, and
I. N.
Budiantara
,
J. Math Stat.
8
(
4
),
489
499
(
2012
).
25.
Badan Pusat
Statistik
,
Potret Awal Tujuan Pembangunan Berkelanjutan di Indonesia
[Sustainable Development Goals in Indonesia] (Badan Pusat Statistik, Jakarta,
2016
). [Bahasa Indonesia].
26.
I. N.
Budiantara
,
Berkala MIPA
3
,
55
61
(
2005
). [Bahasa Indonesia].
27.
G. H.
Golub
,
M.
Heath
, and
G.
Wahba
,
Technometrics
21
(
2
),
215
223
(
1979
).
28.
Badan Pusat
Statistik
,
Indeks Pembangunan Manusia 2019
[Human Development Index 2019] (Badan Pusat Statistik, Jakarta. 2020). [Bahasa Indonesia].
29.
Badan Pusat
Statistik
,
Penghitungan Indeks Ketimpangan Gender 2018 [Gender Inequality Index Calculation 2018]
(Badan Pusat Statistik, Jakarta.
2019
).
30.
A.
Rahayu
,
Purhadi
,
Sutikno
, and
D. D.
Prastyo
,
Symmetry (Basel)
12
(
5
),
8
13
(
2020
).
31.
P.
Dewanti
,
I. N.
Budiantara
, and
A. T.
Rumiati
,
J. Phys. Conf. Ser.
1562
(
1
), (
2020
).
32.
E.
Sofilda
,
P.
Hermiyanti
, and
M. Z.
Hamzah
,
OIDA Int. J. Sustain. Dev.
8
(
9
),
11
28
(
2015
).
This content is only available via PDF.
You do not currently have access to this content.