The paper presents the initial version of an energy domain ontology intended to consistently describe active heating and electric distribution grids in the Industry 4.0 and energy transition context. The ontology applies as a semantic basis for digital twins of grid segments to reduce costs of integrating numerous disparate models that comprise the twin. Therefore, our ontology, unlike many others, is tailored for the convenience of modeling grid operation and management processes in all parts and aspects. Yet, top-level ontology concepts are made compatible with semantic models and ontologies existing in the energy domain, such as Common Information Model (CIM), Smart Appliances REFerence (SAREF), Domain Analysis-Based Global Energy Ontology (DABGEO). The taxonomy of processes to be twinned occupies a central place in our ontology. Taxonomies of other top-level concepts relate to them: events trigger processes, actors initiate processes and participate in them, equipment and other resources are used/affected, and models formally represent everything.

1.
H.
Lund
 et al.,
Energy
68
,
1
11
(
2014
).
2.
L. R.
Rodríguez
 et al.,
Appl. Energy
214
,
191
204
(
2018
).
3.
V. I.
Solovjev
,
Informational and Mathematical Technologies in Science and Management
2
(
14
),
52
61
(
2019
).
4.
N. I.
Voropai
 et al,
Control Sciences
1
,
2
14
(
2019
).
5.
Digital roadmap for district heating & cooling
(
DHC+ Technology Platform
,
2019
).
6.
G.
Steindl
 et al.,
Appl. Sciences
10
,
8903
(
2020
).
7.
S. P.
Kovalyov
and
A. V.
Tolok
,
Information Technologies in Design and Manufacturing
2
,
3
9
(
2015
).
8.
Q.
Qia
 et al.,
Procedia CIRP
72
,
237
242
(
2018
).
9.
S. K.
Andryushkevich
,
S. P.
Kovalyov
, and
E.
Nefedov
, “Composition and application of power system digital twins based on ontological modeling,” in
Proc. 17th IEEE Intl. Conf. Industrial Informatics INDIN'19
(
IEEE, Helsinki-Espoo, Finland
,
2019
), pp.
1536
1542
.
10.
N. G.
Zagoruiko
 et al.,
Optoelectronics, Instrumentation and Data Processing
41
(
5
),
11
20
(
2005
).
11.
S. P.
Kovalyov
,
Optoelectronics, Instrumentation and Data Processing
44
(
2
),
125
130
(
2008
).
12.
V. M.
Catterson
 et al.,
An upper ontology for power engineering applications
(
IEEE Power and Energy Society multi-agent systems working group
,
2010
).
13.
Z.
Ma
 et al.,
Energies
12
,
3200
(
2019
).
14.
A. A.
Voloshin
,
E. A.
Voloshin
, and
T. G.
Busygin
,
Announces in Electric Energy
,
4
,
44
50
(
2017
).
15.
H. J.
Kim
 et al.,
Energies
13
,
1435
(
2020
).
16.
F. S.
Nepsha
,
A. A.
Andrievsky
, and
M. I.
Krasilnikov
,
Automation in Industry
,
1
,
27
33
(
2021
).
17.
O. P.
Ravi
,
Energy grid ontology for digital twins is now available
(
Microsoft
,
2021
).
18.
L.
Daniele
,
F.
den Hartog
, and
J.
Roes
, “
Created in close interaction with the industry: the Smart Appliances REFerence (SAREF) ontology
,” in
Proc. Formal Ontologies Meet Industry FOMI 2015, Lecture Notes in Business Information Processing
225
(
Springer
,
2015
), pp.
100
112
.
19.
M.
Haghgoo
 et al.,
IET Smart Cities
,
2
,
191
198
(
2020
).
20.
J.
Cuenca
,
F.
Larrinaga
, and
E.
Curry
,
Journal of Web Semantics
61–62
,
100550
(
2020
).
21.
V. A.
Stennikov
,
E. A.
Barakhtenko
, and
D. V.
Sokolov
,
Ontology of Designing
4
(
14
),
54
68
(
2014
).
22.
S. P.
Kovalyov
,
Systems and Means of Informatics
,
30
(
1
),
66
81
(
2020
).
23.
T. N.
Gavrilova
and
V. F.
Horoshevsky
,
Knowledge bases of intelligent systems
(
Piter, Saint-Petersburg
,
Russia
,
2000
).
24.
S. P.
Nikanorov
,
System-theoretic constructs for conceptual analysis and design
(“Concept”,
Moscow
,
2008
).
This content is only available via PDF.
You do not currently have access to this content.