This review considers a problem in the development of mobile robot adhesion methods with vertical surfaces and the appropriate locomotion mechanism design. The evolution of adhesion methods for wall-climbing robots (based on friction, magnetic forces, air pressure, electrostatic adhesion, molecular forces, rheological properties of fluids and their combinations) and their locomotion principles (wheeled, tracked, walking, sliding framed and hybrid) is studied. Wall-climbing robots are classified according to the applications, adhesion methods, and locomotion mechanisms. The advantages and disadvantages of various adhesion methods and locomotion mechanisms are analyzed in terms of mobility, noiselessness, autonomy, and energy efficiency. Focus is placed on the physical and technical aspects of the adhesion methods and the possibility of combining adhesion and locomotion methods.

1.
A.
Nishi
,
Y.
Wakasugi
, and
K.
Watanabe
,
Adv. Robot.
,
1
(
1
),
33
45
(
1986
).
2.
S.
Chen
,
J.
Shang
,
Z.
Zhao
,
T.
Sattar
, and
B.
Bridge
, “Novel solutions to design problems of industrial climbing robots,” in Climbing and Walking Robots, edited by
M. O.
Tokhi
,
G. S.
Virk
, and
M. A.
Hossain
(
Springer
,
Berlin
,
2006
), pp.
139
146
.
3.
B.
Chu
,
K.
Jung
,
CS.
Han
, and
D.
Hong
,
Int. J. Precis. Eng. Manuf.
,
11
(
4
),
633
647
(
2010
).
4.
N. S.
Vlasova
and
N. V.
Bykov
, preprint arXiv:1905.09214v1 [cs.RO] (
2019
).
5.
R. S.
Bisht
and
S. J.
Alexander
,
“Mobile robots for periodic maintenance and inspection of civil infrastructure: a review
,” in
Proceedings of 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM 2013)
(
Roorkee
,
2013
), pp.
1050
1057
.
6.
V. G.
Gradetsky
and
M. M.
Knyazkov
,
“Wall climbing robots: Mechanics, control and adaptation to environment
,” in
Proceedings of 23rd International Conference on Robotics in Alpe-Adria-Danube Region (RAAD)
(
Smolenice
,
2014
), p.
7002240
.
7.
S.
Nansai
and
R. E.
Mohan
,
Robot.
,
5
(
3
),
14
(
2016
).
8.
R. D.
Dethe
and
S. B.
Jaju
,
Int. J. Eng. Res. Gen. Sci.
,
2
(
3
),
33
42
(
2014
).
9.
M. F.
Silva
,
J. A. T.
Machado
, and
J. K.
Tar
,
“A Survey of Technologies for Climbing Robots Adhesion to Surfaces
,” in
Proceedings of IEEE International Conference on Computational Cybernetics
(
Stara Lesna
,
2008
), pp.
127
132
.
10.
M. F.
Silva
,
J. A. T.
Machado
,
“New technologies for climbing robots adhesion to surfaces
,” in
Proceeding of 2008 International Workshop on New Trends on Science and Technology (NTST)
(
Ankara
,
2008
), http://ntst08.cankaya.edu.tr/proceedings/proceedings/ManuelFSilva.pdf.
11.
J. L.
Guo
,
l.
Justham
,
M.
Jackson
, and
R.
Parkin
,
Key Eng. Mater.
,
649
,
22
29
(
2015
).
12.
D.
Schmidt
and
K.
Berns
,
Robot. Auton. Syst.
,
61
(
12
),
1288
1305
(
2013
).
13.
K.
Berns
,
C.
Hillenbrand
, and
T.
Luksch
, “Climbing robots for commercial applications – a survey,” in Proceeding of 2003 6th International Conference on Climbing and Walking Robots and their Supporting Technologies (CLAWAR 2003), edited by
G.
Muscato
and
D.
Longo
(
Professional Engineering Publishing
,
London
,
2003
), pp.
771
776
.
14.
G.
Lee
,
H.
Kim
,
K.
Seo
,
J.
Kim
,
M.
Sitti
, and
T.
Seo
,
J. Field Robot.
,
33
(
6
),
737
750
(
2016
).
15.
E.
Gambao
and
M.
Hernando
,
“Control System for a Semi-automatic Façade Cleaning Robot
,” in
Proceedings of the 23rd ISARC
(
Tokyo
,
2006
), pp.
406
411
.
16.
A.
Brusell
,
G.
Andrikopoulos
, and
G.
Nikolakopoulos
,
“A survey on pneumatic wall-climbing robots for inspection
,” in
Proceedings of 24th Mediterranean Conference on Control and Automation (MED)
(
Athens
,
2016
), pp.
220
225
.
17.
J.
Xiao
and
A.
Sadegh
, “City-Climber: a new generation wall-climbing robots,” in Climbing and walking robots: towards new applications, edited by
H.
Zhang
(
InTech
,
Vienna
,
2007
), pp.
383
402
.
18.
T.
Yano
,
T.
Suwa
,
M.
Murakami
, and
T.
Yamamoto
,
“Development of a semi self-contained wall climbing robot with scanning type suction cups
,” in
Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS ’97
(tGrenoble,
1997
), pp.
900
905
.
19.
R.
Liang
,
R.
Liu
,
C.
Yang
, and
K.
Wang
,
“Design, modeling and analysis of a climbing robot used for inspection of glass curtain walls” in
Proceedings of 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO)
(
Shenzhen
,
2013
), pp.
402
407
.
20.
W.
Fischer
,
F.
Tâche
, and
R.
Siegwart
,
“Magnetic wall climbing robot for thin surfaces with specific obstacles
,” in
Field and Service Robotics: Results of the 6th International Conference
, edited by
C.
Laugier
and
R.
Siegwart
(
Springer
,
Berlin
,
2008
), pp.
551
561
.
21.
M. G.
Alkalla
,
M. A.
Fanni
, and
A. M.
Mohamed
,
“A novel propeller-type climbing robot for vessels inspection
,” in
2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)
(
Busan
,
2015
), pp.
1623
1628
.
22.
L. P.
Kalra
,
J.
Gu
, and
M.
Meng
,
“A Wall Climbing Robot for Oil Tank Inspection
,” in
Proceedings of 2006 IEEE International Conference on Robotics and Biomimetics
(
Kunming
,
2006
), pp.
1523
1528
.
23.
H.
Choi
,
T.
Kang
, and
J.
Park
,
KSME Int. J.
,
18
(
4
),
573
581
(
2004
).
24.
O. F.
Howlader
and
T. P.
Sattar
,
“Novel adhesion mechanism and design parameters for concrete wall- climbing robot
,” in
Proceedings of 2015 SAI Intelligent Systems Conference (IntelliSys)
(
London
,
2015
), pp.
267
273
.
25.
M. P.
Murphy
,
W.
Tso
,
M.
Tanzini
, and
M.
Sitti
,
“Waalbot: An Agile Small-Scale Wall Climbing Robot Utilizing Pressure Sensitive Adhesives
,” in
Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
(
Beijing, 2006
), pp.
3411
3416
.
26.
W. R.
Provanchen
,
S. I.
Jensen-Segal
,
M. A.
Fehlberg
,
IEEE/ASME Trans. Mechatron.
,
16
(
5
),
897
906
(
2011
).
27.
F.
Xu
,
X.
Wang
, and
G.
Jiang
,
Int. J. Adv. Robot. Syst.
,
9
,
261
(
2012
).
28.
Z.
Bi
,
Y.
Guan
,
S.
Chen
,
H.
Zhu
, and
H.
Zhang
,
“A miniature biped wall-climbing robot for inspection of magnetic metal surfaces” in
Proceedings of 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)
(
Guangzhou
,
2012
), pp.
324
329
.
29.
W.
Shen
,
J.
Gu
, and
Y.
Shen
,
Appl. Bion. Biomech.
,
3
(
3
),
151
159
(
2006
).
30.
M. F.
Silva
,
R. S.
Barbosa
, and
A. L. C.
Oliveira
,
J. Robot., 906545
(
2012
).
31.
C.
Yan
,
Z.
Sun
,
W.
Zhang
, and
Q.
Chen
,
Int. J. Prec. Eng. Manuf.
,
17
(
7
),
871
878
(
2016
).
32.
I. M.
Koo
,
T. D.
Trong
,
Y. H.
Lee
,
H.
Moon
,
J.
Koo
,
S. K.
Park
, and
H. R.
Choi
,
J. Intell. Robot. Syst.
,
72
(
1
),
57
72
(
2013
).
33.
A.
Nishi
and
H.
Miyagi
,
“Propeller Type Wall-Climbing Robot for Inspection Use
,” in
Proceedings of the 10th ISARC
(
Houston
,
1993), pp. 189-196
.
34.
R.
Chen
,
R.
Liu
,
J.
Chen
, and
J.
Zhang
,
“A gecko inspired wall-climbing robot based on electrostatic adhesion mechanism
,” in
Proceedings of 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO)
, (
Shenzhen, 2013), pp. 396-401
.
35.
F.
Xu
,
B.
Wang
,
J.
Shen
,
J.
Hu
, and
G.
Jiang
,
J. Intell. Robot. Syst.
,
89
,
301
317
(
2018
).
36.
W.
Lee
,
M.
Hirai
, and
S.
Hirose
,
Adv. Robot.
,
27
(
14
),
1099
1111
(
2013
).
37.
Y.
Fu
,
Z.
Li
, and
S.
Wang
,
“A wheel-leg hybrid wall climbing robot with multi-surface locomotion ability
,” in
Proceedings of 2008 IEEE International Conference on Mechatronics and Automation
(
Takamatsu
,
2008
), pp.
627
632
.
38.
J.
Liu
,
H.
Jiang
,
Z.
Li
, and
H.
Hu
,
“A small window-cleaning robot for domestic use
,” in
Proceedings of 2009 International Conference on Artificial Intelligence and Computational Intelligence
(
Shanghai
,
2009
), pp.
262
266
.
39.
N.
Elkmann
,
T.
Felsch
,
M.
Sack
,
J.
Saenz
, and
J.
Hortig
,
“Innovative service robot systems for facade cleaning of difficult-to-access areas
,” in
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
(
Lausanne
,
2002
), pp.
756
762
.
40.
Y.
Liu
,
H. G.
Kim
, and
T. W.
Seo
,
IEEE/ASME Trans. Mechatron.
,
21
(
4
),
1812
1821
(
2016
).
41.
J.
Liu
,
Z.
Tong
,
J.
Fu
,
D.
Wang
,
Q.
Su
, and
J.
Zou
,
“A gecko inspired fluid driven climbing robot
,” in
Proceedings of 2011 IEEE International Conference on Robotics and Automation
(
Shanghai
,
2011
), pp.
783
788
.
42.
K.
Seo
,
S.
Cho
,
T.
Kim
,
H. S.
Kim
, and
J.
Kim
,
Mech. Mach. Theory
,
70
,
189
208
(
2013
).
43.
S.
Moon
,
J.
Huh
,
D.
Hong
,
S.
Lee
, and
C.
Han
,
Robot. Com.-Int. Manuf.
,
31
,
11
20
(
2015
).
44.
T.
Akinfiev
,
M.
Armada
, and
S.
Nabulsi
,
Ind. Robot: Int. J.
,
36
(
4
),
352
357
(
2009
).
45.
T.
Kim
,
Y.
Jeon
,
S.
Yoo
,
K.
Kim
,
H.S.
Kim
, and
J.
Kim
,
Autom. Constr.
,
83
,
1
18
(
2017
).
46.
Y.
Liu
,
S.
Sun
,
X.
Wu
, and
T.
Mei
,
J. Bion. Eng.
,
12
,
17
28
(
2015
).
47.
Ch.-Y.
Lin
,
H.-Y.
Chueh
, and
J. Chin. Inst. Eng.
,
40
(
1
),
45
54
(
2017
).
48.
M.
Tavakoli
,
J.
Lourenço
,
C.
Viegas
,
P.
Neto
, and
A. T.
de Almeida
,
Mechatron.
,
36
,
136
146
(
2016
).
49.
B.
Vishanth
,
S.
Kathiravan
,
S. G.
Prasad
,
R.
Raju
,
D. J.
Deepak
,
Int. J. Innov. Sci., Eng. Technol.
,
3
,
1293
(
2014
).
50.
H.
Zhang
,
W.
Wang
,
J.
González-Gomez
, and
J.
Zhang
,
Adv. Robot.
,
23
,
889
906
(
2009
).
51.
H.
Kim
,
D.
Kim
,
H.
Yang
,
K.
Lee
,
K.
Seo
,
D.
Chang
,
J.
Kim
,
J. Mech. Sci. Technol.
,
22
(
8
),
1490
1498
(
2008
).
52.
S.
Panich
,
J. Comput. Sci.
,
6
(
10
),
1185
1188
(
2010
).
53.
K.
Wang
,
W.
Wang
, and
H.
Zhang
,
Procedia Eng.
,
12
,
9
14
(
2011
).
54.
M.
Wagner
,
X.
Chen
,
M.
Nayyerloo
,
W.
Wang
and
J. G.
Chase
,
"A Novel Wall Climbing Robot Based on Bernoulli Effect," in
Proceedings of 2008 IEEE/ASME International Conference on Mechtronic and Embedded Systems and Applications
(
Beijing
,
2008
), pp.
210
215
.
55.
K.
Autumn
and
A. M.
Peattie
,
Integr. Comp. Biol.
,
42
(
6
),
1081
1090
(
2002
).
56.
M. P.
Murphy
,
C.
Kute
,
Y.
Mengüç
, and
M.
Sitti
,
Int. J. Robot. Res.
,
30
(
1
),
118
133
(
2011
).
57.
J.
Krahn
,
Y.
Liu
,
A.
Sadeghi
, and
C.
Menon
,
Smart Mater. Struct.
,
20
,
115021
(
2011
).
58.
M.
Henrey
,
A.
Ahmed
,
P.
Boscariol
,
L.
Shannon
, and
C.
Menon
,
J. Bion. Eng.
,
11
,
1
17
(
2014
).
59.
H.
Ko
,
H.
Yi
, and
H. E.
Jeong
,
Int. J. Prec. Eng. Manuf. Green Technol.
,
4
(
3
),
273
280
(
2017
).
60.
S.
Kim
,
M.
Spenko
,
S.
Trujillo
,
B.
Heyneman
,
D.
Santos
, and
M. R.
Cutkovsky
,
IEEE Trans. Robot.
,
24
(
1
),
65
74
(
2008
).
61.
B.
Aksak
,
M. P.
Murphy
, and
M.
Sitti
,
Langmuir
,
23
(
6
),
3322
3332
(
2007
).
62.
O.
Unver
and
M.
Sitti
,
Int. J. Robot. Res.
,
29
(
14
),
1761
1777
(
2010
).
63.
O.
Unver
and
M.
Sitti
,
IEEE Trans. Robot.
,
26
(
1
),
131
141
(
2010
).
64.
K. A.
Daltorio
,
A. D.
Horchler
,
S.
Gorb
,
R. E.
Ritzmann
, and
R. D.
Quinn
,
“A small wall-walking robot with compliant, adhesive feet
,” in
Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (Edmonton, Alta.
,
2005
), pp.
3648
3653
.
65.
M.
Osswald
and
F.
Iida
,
Robot. Auton. Syst.
,
61
(
6
),
616
625
(
2013
).
66.
L.
Wang
,
L.
Graber
, and
F.
Iida
,
IEEE Trans. Robot.
,
29
(
4
),
863
874
(
2013
).
67.
S.
Prakash
,
N.
David
, and
R.
Avaneesh
,
Mechanics and Mechanical Engineering
,
20
(
1
),
15
21
(
2016
).
68.
B.
Chan
,
N. J.
Balmforth
, and
A. E.
Hosoi
,
Phys. Fluids
,
17
(
11
),
113101
(
2005
).
69.
N.
Wiltsie
,
M.
Lanzetta
, and
K.
Iagnemma
,
“A controllably adhesive climbing robot using magnetorheological fluid
,” in
Proceedings of 2012 IEEE International Conference on Technologies for Practical Robot Applications (TePRA)
(
Woburn, MA
,
2012
), p.
91
96
.
70.
K. H.
Koh
,
M.
Sreekumar
, and
S. G.
Ponnambalam
,
Mechatron.
,
35
,
122
135
(
2016
).
71.
B.
He
,
Z.
Wang
,
M.
Li
,
K.
Wang
,
R.
Shen
, and
S.
Hu
,
IEEE/ASME Trans. Mechatron.
,
19
(
1
),
312
320
(
2014
).
72.
M. S.
Tovarnov
and
N. V.
Bykov
,
J. Mach. Manuf. Reliab.
,
48
(
3
),
250
258
(
2019
).
This content is only available via PDF.
You do not currently have access to this content.