In this study, sealed cans technique containing the CN-85 detector was used to estimate the radioactivity of alpha particles and the radiologic hazards resulting from radon in eighteen cement samples available in the Iraqi market. The obtained results show that, the radon concentration varied from (4.918±0.123 to 19.023±0.242) ×103 Bq/m3 with a mean (11.513±0.184)×103 Bq/m3 . The effective radium content vary from 0.631±0.044 to 2.442±0.086 Bq/kg with a mean 1.478±0.065 Bq/kg. Mass and surface for radon exhalation rate vary from 4.772±0.121 to 18.46±0.238 mBq/kg.h with a mean 11.172±0.182 mBq/kg.h , and from 84.895±0.511 to 328.367±1.006 mBq/m2.h , with a mean 198.740±0.769 mBq/m2.h respectively. The uranium concentration varied from 9.477±0.171 to 36.658±0.336 Bq/kg with a mean value of 22.187±0.256 Bq/kg. It was found that the value of the annual effective dose varied from 4.643±0.119 to 17.958±0.235 mSv/y with a mean 10.869±0.179 mSv/y . Alpha index vary from (3.157±0.098 to 12.211±0.194) ×10−-3 , with a mean (7.391±0.148) ×10−-3 . Increased lifetime cancer risk varied from (16.250±0.223 to 62.854±0.44) ×10−-3 , with a mean value of (38.041±0.336) ×10−3. After obtaining those results and comparing them with the global average and permissible limits recommended by international scientific agencies such as the International Commission on Radiological Protection (ICRP 2010), the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 2017).It was found that the rate of each of the concentration of the radium content, the concentration of uranium, the radon exhalation rate, and the alpha index were less than the permissible rate, while the rates of both the radon concentration and the annual effective dose were slightly greater than the global permissible rate. In general, the studied cement samples are safe for use.

1.
Trevisi
R.
,
Risica
S.
,
D‟Alessandro
M.
,
Paradiso
D.
,
Nuccetelli
C.
Natural radioactivity in building materials in the European Union: A database and an estimate of radiological significance
.
J. Environ. Radioact
;
105
:
11
20
. doi: ,
2012
.
2.
Saad
,
A. F.
Radium activity and radon exhalation rates from phosphate ores using CR-39 on-line with an electronic radon gas analyzer “Alpha GUARD
".
Radiation Measurements
, vol.
43
, p.p.
463
466
,
2008
.
3.
IARC
. IARC monographs on the evaluation of carcinogenic risks to humans (1st ed.).
Lyon, France: Author
. p.
1452
,
2004
.
4.
Bala
,
P.
,
Kumar
,
V.
, &
Mehra
,
R.
Measurement of radon exhalation rate in various building materials and soil samples
.
Journal Earth System Science
, vol.
126
, p.p.
2
8
,
2017
.
5.
D.
Iskandar
,
T.
Lida
,
H.
Yamazawa
,
J.
Moruzumi
,
J.
Koarashi
,
K.
Yamasoto
,
K.
Yamasaki
,
M.
Shimo
,
T.
Tsujimoto
,
S.
Ishiawa
,
M.
Fukuda
, and
H.
Kojima
,
The transport mechanisms of 222Rnin soil at Tateishi as an anomaly spot in Japan
,
Appl. Radiat. Isot.
, vol.
63
, p.p.
401
408
2005
.
6.
C. R.
Cothern
,
W. L.
Lappenbusch
and
J.
Michel
,
Dirinking water contribution to natural background radiation
.
Health Phys.
Vol.
50
, p.p.
33
47
1986
.
7.
Man-made mineral fibres and radon
,”
Monographs on the Evaluation of Carcinogenic Risks to Humans
, vol.
43
,
1988
.
8.
Ionizing radiation part 2. Some internally deposited radionuclides
,”
Monographs on the Evaluation of Carcinogenic Risk to Humans
, vol.
78
,
2001
.
9.
S.
Darby
,
H.
Hill
, and
R.
Doll
, “
Radon: A likely carcinogen at all exposures
,”
Ann. Oncol.
, vol.
12
, pp.
1341
1351
,
2001
.
10.
M.
Janik
,
S.
Tokonami
,
C.
Kranrod
,
A.
Sorimachi
,
T.
Ishikawa
,
M.
Hosoda
,
J.
McLaughlin
,
B.-U.
Chang
, and
Y. J.
Kim
, “
Comparative analysis of radon, thoron and thoron progeny concentration measurements
,”
Journal of Radiation Research
, vol.
54
, pp.
597
610
,
2013
.
11.
R. L.
Fleischer
, et al., "
Tracks of charged particles in solids
,"
Science,
vol.
149
, pp.
383
393
,
1965
.
12.
Abdalsattar Kareem
Hashim
,
Laith Ahmed
Najam
,
Elham Jasim
Mohammed
and
Ammar Salah
Hameed
, "
Estimation of radon exhalation rate, radium activity and uranium concentration in biscuit samples in Iraq
",
Iranian Journal of Medical Physics
, vol.
16
, p.p.
152
157
,
2019
.
13.
Abdalsattar Kareem
Hashim
and
Sara Salih
Nayif
, "
Determination of the radiation of alpha particles in the air of Primary School Buildings in the City of Karbala
",
Indian Journal of Public Health Research & Development
, January, Vol.
10
, No.
1
, p.p.
531
537
,
2019
.
14.
A.S.
Hameed
,
A.K.
Hashim
and
E. Jasim
Mohammed
, "
The effective radium content and radon concentrations in coffee samples
",
International Journal of Radiation Research
, July, Vol.
18
, No
3
, pp.
461
466
,
2020
.
15.
Abdalsattar Kareem
Hashim
,
Ammar S.
Hameed
,
Elham Jasim
Mohammed
and
Fadhil Khaddam
Fuliful
, "
Measurement of alpha Particle concentrations in different chips samples from Iraqi Market
",
The 7th International Conference on Applied Science and Technology (ICAST 2019
),
AIP Conf. Proc.
2144
, p.p.
030017
-
1
–030017-9;
2019
.
16.
Abdalsattar Kareem
Hashim
,
Laith Ahmed
Najam
,
Nabeel
Ashour
and
Elham Jasim
Mohammed
, "
Uranium concentration, effective radium content and radon exhalation rate estimation for different tea brand samples in Iraqi market
",
Plant Archives
Vol.
19
, No.
1
, pp.
407
412
,
2019
.
17.
Abbas J. Al-
saadi
,
Abdalsattar K.
Hashim
and
Fadhil M.
Hussein
, "
Measurement of radon and uranium concentrations in the dates and their seeds of different regions in Karbala Governorate
",
Journal of Babylon University/Pure and Applied Sciences
, Vol.
21
, No.
6
, pp.
2134
2147
,
2013
.
18.
IAEA (International Atomic Energy Agency)
, Construction and Use of Calibration Facilities for Radiometric Field Equipment,
Technical Report No. 309
,
Vienna, Austria
,
1989
.
19.
IAEA (International Atomic Energy Agency)
, Guidelines for radioelement mapping using gamma ray spectrometry data,
Technical Reports Series No. 1363
,
Vienna, Austria
,
2003
.
20.
Ayman M.
Abdallaa
and
Tayseer I.
Al-Naggar
, "
Estimation of radiologic hazards of radon resulting from ceramic tiles used in Najran city
",
Journal of Radiation Research and Applied Sciences
, VOL.
12
, NO.
1
, p.p.
210
218
,
2019
.
21.
EC
. (
1999
).
Radiation Protection Unit, Radiological Protection Principles Concerning the Nat ural Radioactivity of Building Materials
.
Radiat. Prot.
112
.
22.
Moharram
,
M. B.
,
Suliman
,
M. N.
,
Zahran
,
N. F.
,
Shennawy
,
S. E.
, and
El Sayed
,
A. R.
238U, 232Th content and radon exhalation rate in some Egyptian building materials
.
Annals of Nuclear Energy
, vol.
45
, p.p.
138
143
,
2012
.
23.
Omeje
,
M.
,
Adewoyin
,
O. O.
,
Emmanuel
,
S. J.
,
Ehi-Eromosele
,
C. O.
,
Emenike
,
C. P.
,
Usikalu
,
M. R.
,
Mohammad
,
A. S.
Natural radioactivity concentrations of 226Ra, 232Th, and 40K in commercial building materials and their lifetime cancer risk assessment in dwellers, Human and Ecological Risk Assessment: Human and EcologicalRisk Assessment
.
An International Journal
, vol.
24
, p.p.
2036
2053
,
2018
.
24.
Tufail
,
M.
,
Nasim
,
A.
,
Sabiha
,
J.
, &
Tehsin
,
H.
Natural radioactivity hazards of building bricks fabricated from soil of two districts of Pakistan
.
Journal of Radiological Protection
, vol.
27
, p.p.
481
492
,
2007
.
25.
Shoeib
,
M. Y.
, &
Thabayneh
,
K. M.
Assessment of natural radiation exposure and radon exhalation rate in various samples of Egyptian building materials
.
Journal of Radiation Research and Applied Sciences
, vol.
7
, p.p.
174
181
,
2014
.
26.
Taskin
,
H.
,
Karavus
,
M.
,
Ay
,
P.
,
Topuzoglu
,
A.
,
Hidiroglu
,
S.
, and
Karahan
,
G.
Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey
.
Journal of Environmental Radioactivity
, doi: , vol.
100
, p.p.
49
53
,
2009
.
27.
Thabayneh
,
K. M.
Measurement of natural radioactivity and radon exhalation rate in Granite samples used in Palestinian buildings
.
Arabian Journal for Science and Engineering
, vol.
38
, p.p.
201
207
,
2013
.
28.
ICRP
.
Against Radon Exposure. Author. Ann. ICRP Ref. 4829-9671-6554.
doi: ,
2012
.
29.
UNSCEAR
. Sources, Effects and Risks of Ionizing Radiation, Report to the General Assembly with. Annex B: Exposures from Natural Sources of Radiation,
United Nations, New York
,
2000b
.
30.
UNSCEAR
,
Source And Effects Of Ionizing Radiation
.
United Nations
,
New York
,
2000
.
31.
UNSCEAR
,
Report Of The United Nations Scientific Committee On The Effects Of Atomic Radiation To The General Assembly
.
ANNEX B Exposures From Natural Radiation Sources
,
2000
.
32.
Robe
,
M. C.
,
Labed
,
V.
, Explaining the variation in soil radon concentrations: A Study Of Influence Of Some Intrinsic Properties Of A Rock Matrix On The Radon Emission Factor. In:
C.
Dubois
(Ed.), Gas Geochemistry, 16 (Suppl.),
Environ. Geochem. Health. Science Reviews
,
Northwood
, p.p.
535
542
,
1995
.
33.
Nisar
Ahmad
,
Mohamad Suhaimi
Jaafar
,
Sohail Aziz
Khan
,
Tabassum
Nasir
,
Sajjad
Ahmad
and
Muhammad
Rahim
, "
Measurement of radon exhalation rate, radium activity and annual effective dose from bricks and cement samples collected from Dera Ismail Khan
",
American Journal of Applied Sciences
, vol.
11
, No.
2
, p.p.
240
247
,
2014
.
34.
Nain
,
M.
,
Chauhan
,
R.
, &
Chakarvarti
,
S.
, "
Alpha radioactivity in Indian cement samples
",
Iranian Journal of Radiation Research
, vol.
3
, No.
4
, p.p
171
176
,
2006
.
35.
Elzain
,
A.
, "
Radon exhalation rates from some building materials used in Sudan
",
published online Indoor and Built Environment
, p.p.
1
9
,
2014
.
36.
Kobeissi
,
M. A.
,
El Samad
,
O.
,
Zahraman
,
K.
,
Milky
,
S.
,
Bahsoun
,
F.
, and
Abumurad
,
K. M.
, "
Natural radioactivity measurements in building materials in Southern Lebanon
",
Journal of Environmental Radioactivity
, vol.
99
, p.p.
1279
1288
,
2008
.
This content is only available via PDF.
You do not currently have access to this content.